Neural Network-Based Optimal Fault-Tolerant Control for Interconnected Nonlinear Systems With Actuator Failures

被引:9
作者
Wang, Yujia [1 ]
Wang, Tong [2 ]
Li, Chuang [3 ,4 ]
Yang, Jiae [2 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117585, Singapore
[2] Harbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150006, Peoples R China
[3] Univ Groningen, Dept Biomed Engn, NL-9713 GZ Groningen, Netherlands
[4] Univ Med Ctr Groningen, NL-9713 GZ Groningen, Netherlands
来源
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE | 2024年 / 8卷 / 02期
基金
中国国家自然科学基金;
关键词
Actuator faults; Optimal tracking control; Neural networks; Parameter search algorithm; OUTPUT-FEEDBACK CONTROL; TRACKING; DESIGN;
D O I
10.1109/TETCI.2024.3358981
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, we present a decentralized optimal fault-tolerant control (FTC) framework using neural networks (NNs) for interconnected nonlinear systems. This approach addresses challenges arising from unknown drift functions, interconnections, and multiple faults, including lock-in-place, loss of effectiveness, and float. Specifically, we propose a novel NN-based approximation scheme that utilizes a learning algorithm and a differentiator to estimate unknown information within the system. Additionally, our developed optimal control framework, in contrast to the conventional adaptive dynamic programming (ADP) approach, eliminates the need to separately design the optimal tracking controller into two parts, i.e., the steady-state controller and the feedback controller. Moreover, in the simulation section, control parameters are designed using the presented search algorithm, which demonstrates advantages in terms of both time efficiency and convenience. Finally, comparative simulations are conducted to illustrate the effectiveness of the proposed decentralized optimal fault-tolerant tracking control strategy.
引用
收藏
页码:1828 / 1840
页数:13
相关论文
共 32 条
[1]   Identification of the ten inertia parameters of a rigid body [J].
Atchonouglo, E. ;
Vallee, C. ;
Monnet, T. ;
Fortune, D. .
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2008, 72 (01) :22-25
[2]   Nonlinear Adaptive Fault-Tolerant Quadrotor Altitude and Attitude Tracking With Multiple Actuator Faults [J].
Avram, Remus C. ;
Zhang, Xiaodong ;
Muse, Jonathan .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2018, 26 (02) :701-707
[3]   Observer-Based Event-Triggered Adaptive Decentralized Fuzzy Control for Nonlinear Large-Scale Systems [J].
Cao, Liang ;
Li, Hongyi ;
Wang, Ning ;
Zhou, Qi .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (06) :1201-1214
[4]   Uniform design: Theory and application [J].
Fang, KT ;
Lin, DKJ ;
Winker, P ;
Zhang, Y .
TECHNOMETRICS, 2000, 42 (03) :237-248
[5]   Output tracking of systems subjected to perturbations and a class of actuator faults based on HOSM observation and identification [J].
Ferreira de Loza, Alejandra ;
Cieslak, Jerome ;
Henry, David ;
Zolghadri, Ali ;
Fridman, Leonid M. .
AUTOMATICA, 2015, 59 :200-205
[6]   Robust NN-based decentralized optimal tracking control for interconnected nonlinear systems via adaptive dynamic programming [J].
Guo, Bin ;
Dian, Songyi ;
Zhao, Tao .
NONLINEAR DYNAMICS, 2022, 110 (04) :3429-3446
[7]   DECENTRALIZED ADAPTIVE-CONTROL OF INTERCONNECTED SYSTEMS WITH REDUCED-ORDER MODELS [J].
IOANNOU, P ;
KOKOTOVIC, P .
AUTOMATICA, 1985, 21 (04) :401-412
[8]   Asynchronous Decentralized Fuzzy Observer-Based Output Feedback Control of Nonlinear Large-Scale Systems [J].
Ji, Wenqiang ;
Fu, Shasha ;
Chen, Hailong ;
Qiu, Jianbin .
INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2019, 21 (01) :19-32
[9]   Adaptive Neural Control of Uncertain Nonstrict-Feedback Stochastic Nonlinear Systems with Output Constraint and Unknown Dead Zone [J].
Li, Hongyi ;
Bai, Lu ;
Wang, Lijie ;
Zhou, Qi ;
Wang, Huanqing .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (08) :2048-2059
[10]   Decentralized output-feedback formation control of multiple 3-DOF laboratory helicopters [J].
Li, Zhan ;
Xing, Xing ;
Yu, Jinyong .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2015, 352 (09) :3827-3842