A Transformer Convolutional Network With the Method of Image Segmentation for EEG-Based Emotion Recognition

被引:6
作者
Zhang, Xinyiy [1 ,2 ]
Cheng, Xiankai [1 ,2 ]
机构
[1] Univ Sci & Technol China, Sch Biomed Engn Suzhou, Div Life Sci & Med, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Suzhou 215163, Peoples R China
关键词
Feature extraction; Electroencephalography; Transformers; Image segmentation; Emotion recognition; Convolutional neural networks; Tensors; Electroencephalogram (EEG); emotion recognition; transformer; image segmentation; DEEP NEURAL-NETWORK;
D O I
10.1109/LSP.2024.3353679
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electroencephalogram (EEG) based emotion recognition has become an important topic in human-computer interaction and affective computing. However, existing advanced methods still have some problems. Firstly, using too many electrodes will decrease the practicality of EEG acquisition device. Secondly, transformer is not good at extracting local features. Finally, differential entropy (DE) is unsuitable for extracting features outside the 2-44 Hz frequency band. To solve these problems, we designed a neural network using 14 electrodes, utilizing differential entropy and designed spectrum sum (SS) to extract features, using convolutional neural networks and image segmentation techniques to learn local features, and transformer encoders to learn global features. The model outperformed advanced methods with classification results of 98.50% and 99.00% on the SEED-IV and SEED-V datasets.
引用
收藏
页码:401 / 405
页数:5
相关论文
共 50 条
  • [31] PNN for EEG-based Emotion Recognition
    Zhang, Jianhai
    Chen, Ming
    Hu, Sanqing
    Cao, Yu
    2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 2319 - 2323
  • [32] Hierarchical Convolutional Neural Networks for EEG-Based Emotion Recognition
    Li, Jinpeng
    Zhang, Zhaoxiang
    He, Huiguang
    COGNITIVE COMPUTATION, 2018, 10 (02) : 368 - 380
  • [33] A Computation Resource Friendly Convolutional Neural Network Engine For EEG-based Emotion Recognition
    Zhan, Yi
    Vai, Mang, I
    Barma, Shovan
    Pun, Sio Hang
    Li, Jia Wen
    Mak, Peng Un
    2019 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS (CIVEMSA 2019), 2019, : 198 - 203
  • [34] EmotioNet: A 3-D Convolutional Neural Network for EEG-based Emotion Recognition
    Wang, Yi
    Huang, Zhiyi
    McCane, Brendan
    Neo, Phoebe
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [35] Hierarchical Convolutional Neural Networks for EEG-Based Emotion Recognition
    Jinpeng Li
    Zhaoxiang Zhang
    Huiguang He
    Cognitive Computation, 2018, 10 : 368 - 380
  • [36] EEG-Based Emotion Recognition by Convolutional Neural Network with Multi-Scale Kernels
    Phan, Tran-Dac-Thinh
    Kim, Soo-Hyung
    Yang, Hyung-Jeong
    Lee, Guee-Sang
    SENSORS, 2021, 21 (15)
  • [37] A review on EEG-based multimodal learning for emotion recognition
    Pillalamarri, Rajasekhar
    Shanmugam, Udhayakumar
    ARTIFICIAL INTELLIGENCE REVIEW, 2025, 58 (05)
  • [38] EEG-based emotion recognition systems; comprehensive study
    Hamzah, Hussein Ali
    Abdalla, Kasim K.
    HELIYON, 2024, 10 (10)
  • [39] WeDea: A New EEG-Based Framework for Emotion Recognition
    Kim, Sun-Hee
    Yang, Hyung-Jeong
    Ngoc Anh Thi Nguyen
    Prabhakar, Sunil Kumar
    Lee, Seong-Whan
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (01) : 264 - 275
  • [40] Spiking Spatiotemporal Neural Architecture Search for EEG-Based Emotion Recognition
    Li, Wei
    Zhu, Zhihao
    Shao, Shitong
    Lu, Yao
    Song, Aiguo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74