Optical self-cooling of a membrane oscillator in a cavity optomechanical experiment at room temperature

被引:0
|
作者
Vezio, P. [1 ]
Bonaldi, M. [2 ,3 ]
Borrielli, A. [2 ,3 ]
Marino, F. [4 ,5 ]
Morana, B. [2 ,6 ]
Sarro, P. M.
Serra, E. [3 ,6 ]
Marin, F. [1 ,4 ,5 ,7 ]
机构
[1] Univ Firenze, Dipartimento Fis & Astron, Via Sansone 1, I-50019 Sesto Fiorentino, FI, Italy
[2] Inst Mat Elect & Magnetism, Nanosci Trento FBK Div, I-38123 Povo, Trento, Italy
[3] Trento Inst Fundamental Phys & Applicat, Ist Nazl Fis Nucleare, I-38123 Povo, Trento, Italy
[4] CNR, INO, largo Enr Fermi 6, I-50125 Florence, Italy
[5] INFN, Sez Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, FI, Italy
[6] Delft Univ Technol, Dept Microelect & Comp Engn, ECTM, DIMES, Feldmanweg 17, NL-2628 CT Delft, Netherlands
[7] European Lab Nonlinear Spect, Via Carrara 1, I-50019 Sesto Fiorentino, FI, Italy
关键词
QUANTUM CONTROL; GROUND-STATE; NOISE; NANOPARTICLE; RESONATORS; MOTION;
D O I
10.1103/PhysRevA.108.063508
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Thermal noise is a major obstacle to observing quantum behavior in macroscopic systems. To mitigate its effect, quantum optomechanical experiments are typically performed in a cryogenic environment. However, this condition represents a considerable complication in the transition from fundamental research to quantum technology applications. It is therefore interesting to explore the possibility of achieving the quantum regime in room-temperature experiments. In this work we test the limits of sideband-cooling vibration modes of a SiN membrane in a cavity optomechanical experiment. We obtain an effective temperature of a few millikelvins, corresponding to a phononic occupation number of around 100. We show that further cooling is prevented by the excess classical noise of our laser source, and we outline the road toward the achievement of ground state cooling.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Self-cooling cavity burs for surgical drills
    Silverstein, Calvin C.
    Journal of Medical Devices, Transactions of the ASME, 2007, 1 (04): : 293 - 296
  • [2] Thermoelectric Self-cooling System of Optical Devices
    Liu, Hao-Ran
    Li, Bang-Jun
    Wang, Ru-Zhu
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2022, 43 (03): : 811 - 816
  • [3] Optomechanical sideband cooling of a thin membrane within a cavity
    Karuza, M.
    Molinelli, C.
    Galassi, M.
    Biancofiore, C.
    Natali, R.
    Tombesi, P.
    Di Giuseppe, G.
    Vitali, D.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [4] Improving Mechanical Oscillator Cooling in a Double-Coupled Cavity Optomechanical System with an Optical Parametric Amplifier
    Pan, Peipei
    Chen, Aixi
    Deng, Li
    MATHEMATICS, 2023, 11 (09)
  • [5] Enhanced cooling of micromechanical oscillator in the atom-assisted optomechanical cavity
    Han, Yan
    Zhang, Wen-Zhao
    Cheng, Jiong
    Zhou, Ling
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2014, 12 (01)
  • [6] Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment
    Karuza, M.
    Galassi, M.
    Biancofiore, C.
    Molinelli, C.
    Natali, R.
    Tombesi, P.
    Di Giuseppe, G.
    Vitali, D.
    JOURNAL OF OPTICS, 2013, 15 (02)
  • [7] Dissipative optomechanical coupling with a membrane outside of an optical cavity
    Tagantsev, Alexander K.
    Polzik, Eugene S.
    PHYSICAL REVIEW A, 2021, 103 (06)
  • [8] Quantum correlations from a room-temperature optomechanical cavity
    Purdy, T. P.
    Grutter, K. E.
    Srinivasan, K.
    Taylor, J. M.
    SCIENCE, 2017, 356 (6344) : 1265 - 1268
  • [9] Development of a high power optical cavity for optomechanical QND experiment
    Mori, T.
    Agatsuma, K.
    Ballmer, S.
    Sakata, S.
    Miyakawa, O.
    Kawamura, S.
    Furusawa, A.
    Mio, N.
    9TH EDOARDO AMALDI CONFERENCE ON GRAVITATIONAL WAVES (AMALDI 9) AND THE 2011 NUMERICAL RELATIVITY - DATA ANALYSIS MEETING (NRDA 2011), 2012, 363
  • [10] Dynamic Cooling of a Micromechanical Membrane in a Double-cavity Optomechanical System
    Mu, Qingxia
    Lang, Chao
    Lin, Peiying
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (02) : 454 - 464