Modular supersonic nozzle for the stable laser-driven electron acceleration

被引:3
作者
Lei, Zhenzhe [1 ,2 ,3 ]
Jin, Zhan [1 ,2 ,3 ]
Gu, Yan-Jun [1 ,2 ]
Sato, Shingo [1 ,2 ,3 ]
Zhidkov, Alexei [1 ,2 ]
Rondepierre, Alexandre [1 ,2 ]
Huang, Kai [2 ,4 ]
Nakanii, Nobuhiko [2 ,4 ]
Daito, Izuru [4 ]
Kando, Masaki [1 ,2 ,4 ]
Hosokai, Tomonao [1 ,2 ,3 ]
机构
[1] Osaka Univ, SANKEN, Mihogaoka 8-1, Ibaraki, Osaka 5670047, Japan
[2] RIKEN, SPring 8 Ctr, Innovat Light Sources Div, Laser Accelerator R&D, Kouto 1-1-1,Sayo Cho, Sayo, Hyogo 6795148, Japan
[3] Osaka Univ, Grad Sch Sci, 1-1 Machikaneyama, Toyonaka, Osaka 5600043, Japan
[4] Natl Inst Quantum Sci & Technol QST, Kansai Inst Photon Sci KPSI, 8-1-7 Umemidai, Kizugawa, Kyoto 6190215, Japan
关键词
BEAMS;
D O I
10.1063/5.0181414
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The sharp density down-ramp injection (shock injection) mechanism produces the quasi-monoenergetic electron beam with a bunch duration of tens of femtoseconds via laser wakefield acceleration. The stability of the accelerated electron beam strongly depends on the stability of the laser beam and the shock structure produced by the supersonic gas nozzle. In this paper, we report the study of a newly designed modular supersonic nozzle with a flexible stilling chamber and a converging-diverging structure. The performance of the nozzle is studied both numerically and experimentally with the computational fluid dynamics simulation and the Mach-Zehnder interferometry method. The simulation results and the experimental measurements are well consistent, and both prove the effectiveness of the stilling chamber in stabilizing the gas flow.
引用
收藏
页数:7
相关论文
共 35 条
[1]  
Anderson J., 2016, Fundamentals of Aerodynamics
[2]  
Anderson J.D., 2002, Modern Compressible Flow: with Historical Perspective, V3
[3]  
Bertin J.J., 2014, Aerodynamics for engineers, V6th
[4]   Shock-Front Injector for High-Quality Laser-Plasma Acceleration [J].
Buck, A. ;
Wenz, J. ;
Xu, J. ;
Khrennikov, K. ;
Schmid, K. ;
Heigoldt, M. ;
Mikhailova, J. M. ;
Geissler, M. ;
Shen, B. ;
Krausz, F. ;
Karsch, S. ;
Veisz, L. .
PHYSICAL REVIEW LETTERS, 2013, 110 (18)
[5]   Gas-dynamic density downramp injection in a beam-driven plasma wakefield accelerator [J].
Cabadag, J. P. Couperus ;
Pausch, R. ;
Schoebel, S. ;
Bussmann, M. ;
Chang, Y-Y ;
Corde, S. ;
Debus, A. ;
Ding, H. ;
Doepp, A. ;
Foerster, F. M. ;
Gilljohann, M. ;
Haberstroh, F. ;
Heinemann, T. ;
Hidding, B. ;
Karsch, S. ;
Koehler, A. ;
Kononenko, O. ;
Knetsch, A. ;
Kurz, T. ;
de la Ossa, A. Martinez ;
Nutter, A. ;
Raj, G. ;
Steiniger, K. ;
Schramm, U. ;
Ufer, P. ;
Irman, A. .
PHYSICAL REVIEW RESEARCH, 2021, 3 (04)
[6]   Self-Guided Laser Wakefield Acceleration beyond 1 GeV Using Ionization-Induced Injection [J].
Clayton, C. E. ;
Ralph, J. E. ;
Albert, F. ;
Fonseca, R. A. ;
Glenzer, S. H. ;
Joshi, C. ;
Lu, W. ;
Marsh, K. A. ;
Martins, S. F. ;
Mori, W. B. ;
Pak, A. ;
Tsung, F. S. ;
Pollock, B. B. ;
Ross, J. S. ;
Silva, L. O. ;
Froula, D. H. .
PHYSICAL REVIEW LETTERS, 2010, 105 (10)
[7]   A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration [J].
Ekerfelt, Henrik ;
Hansson, Martin ;
Gonzalez, Isabel Gallardo ;
Davoine, Xavier ;
Lundh, Olle .
SCIENTIFIC REPORTS, 2017, 7
[8]   A laser-plasma accelerator producing monoenergetic electron beams [J].
Faure, J ;
Glinec, Y ;
Pukhov, A ;
Kiselev, S ;
Gordienko, S ;
Lefebvre, E ;
Rousseau, JP ;
Burgy, F ;
Malka, V .
NATURE, 2004, 431 (7008) :541-544
[9]   High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding [J].
Geddes, CGR ;
Toth, C ;
van Tilborg, J ;
Esarey, E ;
Schroeder, CB ;
Bruhwiler, D ;
Nieter, C ;
Cary, J ;
Leemans, WP .
NATURE, 2004, 431 (7008) :538-541
[10]   Laser wakefield and direct laser acceleration of electron by chirped laser pulses [J].
Ghotra, Harjit Singh .
OPTIK, 2022, 260