AC Dynamic Transmission Expansion Planning Using Memetic Algorithms

被引:0
作者
Luna, Carlos A. [1 ]
Carangui, Martin S. [1 ]
Torres, Santiago P. [1 ]
Jara-Alvear, Jose [2 ]
Gavela, Ximena P. [3 ]
Siguenza-Guzman, Lorena [4 ]
Ballari, Daniela [5 ]
Zurita, Ana F. [6 ]
机构
[1] Univ Cuenca, Dept Elect Elect & Telecommun Engn DEET, Cuenca, Ecuador
[2] Univ Azuay UDA, CIENER Res Grp, Cuenca, Ecuador
[3] Escuela Politec Nacl, Dept Elect Engn, Quito, Ecuador
[4] Univ Cuenca, Dept Comp Sci, Cuenca, Ecuador
[5] Univ Azuay, Inst Estudios Regimen Secc Ecuador, Fac Sci & Technol, Cuenca, Ecuador
[6] Corporac Elect Ecuador CELEC EP, Cuenca, Ecuador
来源
2023 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES LATIN AMERICA, ISGT-LA | 2023年
关键词
AC Model; Dynamic Transmission Expansion; Planning; Hill Climbing; Memetic Algorithm; Optimization; Particle Swarm Optimization (PSO); Renewable Energy;
D O I
10.1109/ISGT-LA56058.2023.10328269
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The objective of Dynamic Transmission Expansion Planning (DTEP) is to determine which, where, and when electric infrastructure should be added to a power system within a planning horizon. Adding new components to the system aims to meet future demand and efficiency parameters such as service quality, reliability, and economy. Few research works aim to solve the DTEP problem using the AC network model. In this research work, a solution method using Memetic Algorithms (MA) is proposed. The solution method solves the DTEP problem by combining population-based solution techniques and local search. The full non-convex AC model is used to deal with the DTEP problem. The proposed algorithm combines the Particle Swarm Optimization (PSO) metaheuristic with the Hill Climbing local search technique and it is evaluated using the Garver system.
引用
收藏
页码:510 / 514
页数:5
相关论文
共 50 条
  • [21] Transmission expansion planning using multivariate interpolation
    Mortaz, Ebrahim
    Fernando Fuerte-Ledezma, Luis
    Gutierrez-Alcaraz, Guillermo
    Valenzuela, Jorge
    ELECTRIC POWER SYSTEMS RESEARCH, 2015, 126 : 87 - 99
  • [22] Transmission Expansion and Reactive Power Planning Considering Wind Energy Investment Using A Linearized AC Model
    Arabpour, Abolfazi
    Besmi, Mohammad Reza
    Maghouli, Pouria
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2019, 14 (03) : 1035 - 1043
  • [23] Transmission expansion planning using nonlinear programming
    Al-Hamouz, ZM
    Al-Faraj, AS
    IEEE/PES TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXHIBITION 2002: ASIA PACIFIC, VOLS 1-3, CONFERENCE PROCEEDINGS: NEW WAVE OF T&D TECHNOLOGY FROM ASIA PACIFIC, 2002, : 50 - 55
  • [24] Artificial Intelligence based Dynamic Transmission Network Expansion Planning
    Simo, A.
    Kilyeni, St
    Barbulescu, C.
    2015 8TH INTERNATIONAL CONFERENCE ON HUMAN SYSTEM INTERACTIONS (HSI), 2015, : 54 - 60
  • [25] Stochastic AC Transmission Expansion Planning: A Chance Constrained Distributed Slack Bus Approach With Wind Uncertainty
    Mir, Gunes Becerik
    Karatepe, Engin
    IEEE ACCESS, 2022, 10 : 56796 - 56812
  • [26] Rolling Window Based Dynamic Transmission Network Expansion Planning
    Verma, Ashu
    Bijwe, Pradeep R.
    Panigrahi, Bijaya Ketan
    INTERNATIONAL JOURNAL OF EMERGING ELECTRIC POWER SYSTEMS, 2011, 12 (04):
  • [27] Community energy projects in the context of generation and transmission expansion planning
    Gonzalez, Fabian Fuentes
    Sauma, Enzo
    van der Weijde, Adriaan Hendrik
    ENERGY ECONOMICS, 2022, 108
  • [28] Enhanced Coati Optimization Algorithm for Static and Dynamic Transmission Network Expansion Planning Problems
    Demirbas, Muhammet
    Dosoglu, M. Kenan
    Duman, Serhat
    IEEE ACCESS, 2025, 13 : 35068 - 35100
  • [29] Multi-Stage Dynamic Transmission Network Expansion Planning Using LSHADE-SPACMA
    Refaat, Mohamed M.
    Aleem, Shady H. E. Abdel
    Atia, Yousry
    Ali, Ziad M.
    Sayed, Mahmoud M.
    APPLIED SCIENCES-BASEL, 2021, 11 (05): : 1 - 22
  • [30] Cascade-risk-informed transmission expansion planning of AC electric power systems
    Gjorgiev, Blazhe
    David, Alexander E.
    Sansavini, Giovanni
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 204