Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation

被引:6
|
作者
Wang, Huan [1 ]
Li, Yan-Fu [1 ]
Zhang, Ying [1 ]
机构
[1] Tsinghua Univ, Dept Ind Engn, Beijing 100084, Peoples R China
来源
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Lithium-ion batteries; Prognostic and health management; Capacity prediction; Spiking neural network; NETWORK;
D O I
10.1016/j.rser.2023.113728
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
State-of-health (SOH) estimation of batteries is crucial for ensuring the safety of energy storage systems. Prediction models based on external information (current, voltage, etc.) and artificial neural networks (ANN) are effective solutions. However, external information easily interferes, and the ANN-based model has data dependence, high energy consumption, and insufficient cognitive ability. This motivates us to utilize precise battery physical and chemical degradation information and brain-inspired spiking neural networks (SNNs) for accurate SOH estimation. Therefore, this study proposes a bioinspired spiking spatiotemporal attention neural network (SSA-Net) framework for battery health state monitoring by utilizing full-life-cycle electrochemical impedance spectroscopy (EIS). SSA-Net perfectly models brain neurons' information transmission mechanism and neuron dynamics, thereby endowing it with efficient spatiotemporal feature processing capabilities and low power consumption. Based on the designed spiking residual architecture, SSA-Net constructs a deep spiking information encoding framework achieving high gradient transfer efficiency. More importantly, this study proposes a novel SNN-based spiking spatiotemporal attention module, which realizes the enhancement of useful spiking features and discards worthless information through an adaptive spiking feature selection mechanism. Experimental results show that SSA-Net effectively extracts electrochemical features associated with battery degradation, facilitating precise modeling of the nonlinear relationship between EIS data and SOH and achieving competitive performance.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Improving the state-of-health estimation of lithium-ion batteries based on limited labeled data
    Han, Dou
    Zhang, Yongzhi
    Ruan, Haijun
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [22] Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks
    He, Zhiwei
    Gao, Mingyu
    Ma, Guojin
    Liu, Yuanyuan
    Chen, Sanxin
    JOURNAL OF POWER SOURCES, 2014, 267 : 576 - 583
  • [23] State-of-Health Estimation for Lithium-Ion Batteries in Hybrid Electric Vehicles-A Review
    Zhang, Jianyu
    Li, Kang
    ENERGIES, 2024, 17 (22)
  • [24] Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization
    Dai, Houde
    Wang, Jiaxin
    Huang, Yiyang
    Lai, Yuan
    Zhu, Liqi
    RENEWABLE ENERGY, 2024, 222
  • [25] An Estimation Method of Relative State-of-Health for Lithium-Ion Batteries Using Morlet Wavelet
    Zhao Y.
    Xu J.
    Wang H.
    Mei X.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2019, 53 (12): : 97 - 103and130
  • [26] State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: a review
    Liu, Yanshuo
    Wang, Licheng
    Li, Dezhi
    Wang, Kai
    PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, 2023, 8 (01)
  • [27] State-of-Health Estimation of Lithium-Ion Batteries based on Partial Charging Voltage Profiles
    Stroe, D. -I.
    Knap, V.
    Schaltz, E.
    SELECTED PROCEEDINGS FROM THE 233RD ECS MEETING, 2018, 85 (13): : 379 - 386
  • [28] State-of-Health Estimation for Lithium-Ion Batteries Using Domain Adversarial Transfer Learning
    Ye, Zhuang
    Yu, Jianbo
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (03) : 3528 - 3543
  • [29] A deep learning approach for state-of-health estimation of lithium-ion batteries based on differential thermal voltammetry and attention mechanism
    Zou, Bosong
    Wang, Huijie
    Zhang, Tianyi
    Xiong, Mengyu
    Xiong, Chang
    Sun, Qi
    Wang, Wentao
    Zhang, Lisheng
    Zhang, Cheng
    Ruan, Haijun
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [30] State of Health Estimation for Lithium-Ion Batteries
    Kong, XiangRong
    Bonakdarpour, Arman
    Wetton, Brian T.
    Wilkinson, David P.
    Gopaluni, Bhushan
    IFAC PAPERSONLINE, 2018, 51 (18): : 667 - 671