Best constants in bipolar Lp Hardy-type inequalities

被引:0
作者
Cazacu, Cristian [1 ,2 ,3 ]
Rugina, Teodor [1 ,2 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, 14 Acad St, Bucharest 010014, Romania
[2] Univ Bucharest, Res Inst, ICUB, 14 Acad St, Bucharest 010014, Romania
[3] Romanian Acad, Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl M, Bucharest 050711, Romania
关键词
Hardy inequality; p-Laplacian; Bipolar singular potential; Sharp constant; MULTIPOLAR; SCHRODINGER; OPERATORS; EQUATIONS;
D O I
10.1016/j.jmaa.2023.127635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we prove sharp L-p versions of the multipolar Hardy inequalities in [8,10], in the case of a bipolar potential and p >= 2. Our results are sharp and minimizers do exist in the energy space. New features appear when p > 2 compared to the linear case p = 2 at the level of criticality of the p-Laplacian -Delta(p) perturbed by a singular Hardy bipolar potential. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 14 条
[1]  
Allegretto W, 1998, NONLINEAR ANAL-THEOR, V32, P819
[2]  
Balinsky A.A., 2015, The analysis and geometry of Hardy's inequality
[3]   A unified approach to improved Lp hardy inequalities with best constants [J].
Barbatis, G ;
Filippas, S ;
Tertikas, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (06) :2169-2196
[4]   Estimates for the optimal constants in multipolar Hardy inequalities for Schrodinger and Dirac operators [J].
Bosi, Roberta .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (03) :533-562
[5]   Weighted Hardy's inequalities and Kolmogorov-type operators [J].
Canale, A. ;
Gregorio, F. ;
Rhandi, A. ;
Tacelli, C. .
APPLICABLE ANALYSIS, 2019, 98 (07) :1236-1254
[6]   WEIGHTED MULTIPOLAR HARDY INEQUALITIES AND EVOLUTION PROBLEMS WITH KOLMOGOROV OPERATORS PERTURBED BY SINGULAR POTENTIALS [J].
Canale, Anna ;
Pappalardo, Francesco ;
Tarantino, Ciro .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (01) :405-425
[7]   Weighted Hardy inequalities and Ornstein-Uhlenbeck type operators perturbed by multipolar inverse square potentials [J].
Canale, Anna ;
Pappalardo, Francesco .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (02) :895-909
[8]  
Cazacu C, 2023, Arxiv, DOI arXiv:2201.02482
[9]   Improved Multipolar Hardy Inequalities [J].
Cazacu, Cristian ;
Zuazua, Enrique .
STUDIES IN PHASE SPACE ANALYSIS WITH APPLICATIONS TO PDES, 2013, 84 :35-52
[10]   New estimates for the Hardy constants of multipolar Schrodinger operators [J].
Cazacu, Cristian .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (05)