A shifted Chebyshev operational matrix method for pantograph-type nonlinear fractional differential equations

被引:0
作者
Yang, Changqing [1 ,2 ]
Lv, Xiaoguang [1 ]
机构
[1] Jiangsu Ocean Univ, Dept Sci, Lianyungang, Peoples R China
[2] Jiangsu Ocean Univ, Dept Sci, Lianyungang 222005, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Caputo derivative; Chebyshev polynomial; collocation method; fractional pantograph differential equation; operational matrix; COLLOCATION METHODS; NUMERICAL-SOLUTION;
D O I
10.1002/mma.9677
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we investigate and analyze an approximation of the Chebyshev polynomials for pantograph-type fractional-order differential equations. First, we construct the operational matrices of pantograph and Caputo fractional derivatives using Chebyshev interpolation. Then, the obtained matrices are utilized to approximate the fractional derivative. We also provide a detailed convergence analysis in terms of the weighted square norm. Finally, we describe and discuss the results of three numerical experiments conducted to confirm the applicability and accuracy of the computational scheme.
引用
收藏
页码:1781 / 1793
页数:13
相关论文
共 38 条
[1]   A general formulation and solution scheme for fractional optimal control problems [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :323-337
[2]   ANALYSIS OF A MODEL REPRESENTING STAGE-STRUCTURED POPULATION-GROWTH WITH STATE-DEPENDENT TIME-DELAY [J].
AIELLO, WG ;
FREEDMAN, HI ;
WU, J .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (03) :855-869
[3]   Spectral Galerkin schemes for a class of multi-order fractional pantograph equations [J].
Alsuyuti, M. M. ;
Doha, E. H. ;
Ezz-Eldien, S. S. ;
Youssef, I. K. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 384
[4]   Singularity preserving spectral collocation method for nonlinear systems of fractional differential equations with the right-sided Caputo fractional derivative [J].
Ameen, Ibrahem G. ;
Zaky, Mahmoud A. ;
Doha, Eid H. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 392
[5]   A computational algorithm for the numerical solution of fractional order delay differential equations [J].
Amin, Rohul ;
Shah, Kamal ;
Asif, Muhammad ;
Khan, Imran .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 402
[6]   An approximate approach for the generalized variable-order fractional pantograph equation [J].
Avazzadeh, Z. ;
Heydari, M. H. ;
Mahmoudi, Mohammad Reza .
ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (04) :2347-2354
[7]  
Canuto C., 2006, SCIENTIF COMPUT
[8]   A fractional-order differential equation model of COVID-19 infection of epithelial cells [J].
Chatterjee, Amar Nath ;
Ahmad, Bashir .
CHAOS SOLITONS & FRACTALS, 2021, 147
[9]   Numerical solution of multi-order fractional differential equations with multiple delays via spectral collocation methods [J].
Dabiri, Arman ;
Butcher, Eric A. .
APPLIED MATHEMATICAL MODELLING, 2018, 56 :424-448
[10]   Linear fractional order controllers; A survey in the frequency domain [J].
Dastjerdi, Ali Ahmadi ;
Vinagre, Blas M. ;
Chen, YangQuan ;
HosseinNia, S. Hassan .
ANNUAL REVIEWS IN CONTROL, 2019, 47 :51-70