Efficient Lung Nodule Detection via 3D Deep Learning with Shifted Convolutions

被引:0
作者
Kuang, Xiaohuan [1 ]
Yuan, Kang [2 ]
Du, Bo [1 ]
Yang, Jiancheng [2 ,3 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan, Peoples R China
[2] Dianei Technol, Shanghai, Peoples R China
[3] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
来源
2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN | 2023年
关键词
Nodule Detection; Anchor-Free Detection; Model Lightweight; Shifted Convolution; FALSE-POSITIVE REDUCTION; AUTOMATIC DETECTION; IMAGES;
D O I
10.1109/IJCNN54540.2023.10191294
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The high computational costs of deep convolutional neural networks hinder their deployment in real-world applications, including pulmonary nodule detection from CT scans where large 3D image sizes amplify the issue. This paper presents a novel 3D method to detect pulmonary nodules, based on anchor-free U-shaped networks, AFNet. A shifted convolution is further introduced to replace standard 3D convolutions, which reduces both the model sizes and FLOPs (floating-point operations). The shift operator is parameter-free, enabling 3D context fusion between CT slices using 2D convolutions. Extensive experiments on a large-scale lung nodule detection dataset validate the effectiveness of the proposed methods. The AFNet backbone is first proven to be comparable to the previous state of the art (e.g., NoduleNet). We then show that the proposed method with shifted convolutions balances model complexity and performance better than several lightweight methods, and generalizes well with different backbones. As an example, compared to the vanilla model, AFNet with shifted convolutions increases average FROC by 3.08% and reduces FLOPs (floating-point operations) and parameters by 62.40% and 66.62%, respectively.
引用
收藏
页数:8
相关论文
共 31 条
  • [1] [Anonymous], IEEE T MED IMAGING
  • [2] End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography
    Ardila, Diego
    Kiraly, Atilla P.
    Bharadwaj, Sujeeth
    Choi, Bokyung
    Reicher, Joshua J.
    Peng, Lily
    Tse, Daniel
    Etemadi, Mozziyar
    Ye, Wenxing
    Corrado, Greg
    Naidich, David P.
    Shetty, Shravya
    [J]. NATURE MEDICINE, 2019, 25 (06) : 954 - +
  • [3] Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection
    Dou, Qi
    Chen, Hao
    Yu, Lequan
    Qin, Jing
    Heng, Pheng-Ann
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (07) : 1558 - 1567
  • [4] CenterNet: Keypoint Triplets for Object Detection
    Duan, Kaiwen
    Bai, Song
    Xie, Lingxi
    Qi, Honggang
    Huang, Qingming
    Tian, Qi
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6568 - 6577
  • [5] X3D: Expanding Architectures for Efficient Video Recognition
    Feichtenhofer, Christoph
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 200 - 210
  • [6] SlowFast Networks for Video Recognition
    Feichtenhofer, Christoph
    Fan, Haoqi
    Malik, Jitendra
    He, Kaiming
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6201 - 6210
  • [7] Hinton G., 2015, DISTILLING KNOWLEDGE
  • [8] Iandola F. N., 2016, 5MB model size
  • [9] iek zgn., 2016, INT C MED IM COMP CO, P424
  • [10] An Automatic Detection System of Lung Nodule Based on Multigroup Patch-Based Deep Learning Network
    Jiang, Hongyang
    Ma, He
    Qian, Wei
    Gao, Mengdi
    Li, Yan
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2018, 22 (04) : 1227 - 1237