Application of quantum machine learning using quantum kernel algorithms on multiclass neuron M-type classification

被引:7
|
作者
Vasques, Xavier [1 ,2 ,3 ]
Paik, Hanhee [4 ]
Cif, Laura [1 ]
机构
[1] Lab Rech Neurosci Clin, Montferrier sur lez, France
[2] IBM Technol, Bois colombes, France
[3] Ecole Natl Super Cognit Bordeaux, Bordeaux, France
[4] IBM Quantum, IBM T J Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
NOMENCLATURE; CELLS;
D O I
10.1038/s41598-023-38558-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The functional characterization of different neuronal types has been a longstanding and crucial challenge. With the advent of physical quantum computers, it has become possible to apply quantum machine learning algorithms to translate theoretical research into practical solutions. Previous studies have shown the advantages of quantum algorithms on artificially generated datasets, and initial experiments with small binary classification problems have yielded comparable outcomes to classical algorithms. However, it is essential to investigate the potential quantum advantage using real-world data. To the best of our knowledge, this study is the first to propose the utilization of quantum systems to classify neuron morphologies, thereby enhancing our understanding of the performance of automatic multiclass neuron classification using quantum kernel methods. We examined the influence of feature engineering on classification accuracy and found that quantum kernel methods achieved similar performance to classical methods, with certain advantages observed in various configurations.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Quantum Variational vs. Quantum Kernel Machine Learning Models for Partial Discharge Classification in Dielectric Oils
    Miguel Monzon-Verona, Jose
    Garcia-Alonso, Santiago
    Jorge Santana-Martin, Francisco
    SENSORS, 2025, 25 (04)
  • [22] Quantum machine learning for image classification
    Senokosov, Arsenii
    Sedykh, Alexandr
    Sagingalieva, Asel
    Kyriacou, Basil
    Melnikov, Alexey
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (01):
  • [23] Using quantum transport networks for classification: A path toward quantum computing for machine learning
    Lorber, Shmuel
    Zimron, Oded
    Zak, Inbal Lorena
    Milo, Anat
    Dubi, Yonatan
    PHYSICAL REVIEW APPLIED, 2024, 22 (01):
  • [24] Automated segmentation and classification of hand thermal images in rheumatoid arthritis using machine learning algorithms: A comparison with quantum machine learning technique
    Ahalya, R. K.
    Snekhalatha, U.
    Dhanraj, Varun
    JOURNAL OF THERMAL BIOLOGY, 2023, 111
  • [25] Experimental Evaluation of Quantum Machine Learning Algorithms
    Simoes, Ricardo Daniel Monteiro
    Huber, Patrick
    Meier, Nicola
    Smailov, Nikita
    Fuchslin, Rudolf M. M.
    Stockinger, Kurt
    IEEE ACCESS, 2023, 11 : 6197 - 6208
  • [26] Machine Learning Algorithms in Quantum Computing: A Survey
    Ramezani, Somayeh Bakhtiari
    Sommers, Alexander
    Manchukonda, Harish Kumar
    Rahimi, Shahram
    Amirlatifi, Amin
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [27] Quantum machine learning for support vector machine classification
    S. S. Kavitha
    Narasimha Kaulgud
    Evolutionary Intelligence, 2024, 17 : 819 - 828
  • [28] Quantum machine learning for support vector machine classification
    Kavitha, S. S.
    Kaulgud, Narasimha
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (02) : 819 - 828
  • [29] Morphological Neuron Classification Using Machine Learning
    Vasques, Xavier
    Vanel, Laurent
    Villette, Guillaume
    Cif, Laura
    FRONTIERS IN NEUROANATOMY, 2016, 10
  • [30] Application of Machine Learning Algorithms for Visibility Classification
    Ortega, Luz
    Otero, Luis Daniel
    Otero, Carlos
    2019 13TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE (SYSCON), 2019,