Challenges in structural modeling of RNA-protein interactions

被引:4
作者
Liu, Xudong [1 ]
Duan, Yingtian [1 ]
Hong, Xu [1 ]
Xie, Juan [1 ]
Liu, Shiyong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
WEB SERVER; RESIDUE CONTACTS; FORCE-FIELD; DOCKING; PREDICTION; BINDING; DYNAMICS; COMPLEX; PSEUDOURIDINE; ACCURACY;
D O I
10.1016/j.sbi.2023.102623
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the past few years, the number of RNA-binding proteins (RBP) and RNA-RBP interactions has increased significantly. Here, we review recent developments in the methodology for protein-RNA and protein-protein complex structure modeling with deep learning and co-evolution, as well as discuss the challenges and opportunities for building a reliable approach for protein-RNA complex structure modelling. Protein Data bank (PDB) and Cross-linking immunoprecipitation (CLIP) data could be combined together and used to infer 2D geometry of protein-RNA interactions by deep learning.
引用
收藏
页数:8
相关论文
共 81 条
[1]   CONFOLD2: improved contact-driven ab initio protein structure modeling [J].
Adhikari, Badri ;
Cheng, Jianlin .
BMC BIOINFORMATICS, 2018, 19
[2]   Protein-RNA Docking Using ICM [J].
Arnautova, Yelena A. ;
Abagyan, Ruben ;
Totrov, Maxim .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (09) :4971-4984
[3]  
Baek M, 2022, BIORXIV
[4]   Deep learning and protein structure modeling [J].
Baek, Minkyung ;
Baker, David .
NATURE METHODS, 2022, 19 (01) :13-14
[5]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[6]   Binding of the Bacteriophage P22 N-Peptide to the boxB RNA Motif Studied by Molecular Dynamics Simulations [J].
Bahadur, Ranjit P. ;
Kannan, Srinivasaraghavan ;
Zacharias, Martin .
BIOPHYSICAL JOURNAL, 2009, 97 (12) :3139-3149
[7]   A protein-RNA docking benchmark (I): Nonredundant cases [J].
Barik, Amita ;
Nithin, C. ;
Manasa, P. ;
Bahadur, Ranjit Prasad .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2012, 80 (07) :1866-1871
[8]   Protein-assisted RNA fragment docking (RnaX) for modeling RNA-protein interactions using ModelX [J].
Blanco, Javier Delgado ;
Radusky, Leandro G. ;
Cianferoni, Damiano ;
Serrano, Luis .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (49) :24568-24573
[9]   MODOMICS: a database of RNA modification pathways. 2017 update [J].
Boccaletto, Pietro ;
Machnicka, Magdalena A. ;
Purta, Elzbieta ;
Piatkowski, Pawe ;
Baginski, Blazej ;
Wirecki, Tomasz K. ;
de Crecy-Lagard, Valerie ;
Ross, Robert ;
Limbach, Patrick A. ;
Kotter, Annika ;
Helm, Mark ;
Bujnicki, Janusz M. .
NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) :D303-D307
[10]   Improved prediction of protein-protein interactions using AlphaFold2 [J].
Bryant, P. ;
Pozzati, G. ;
Elofsson, A. .
NATURE COMMUNICATIONS, 2022, 13 (01)