The recent expeditious industrialization and urbanization showcase the increasing need for renewable and nonrenewable energy and the severe environmental crisis. In this regard, numerous 2-dimensional (2D) nanomaterials have been developed as a facile approach to meet the futuristic energy essentials and to resolve the crisis. In contrast, the newly explored 2D MXenes (transition metal carbide/nitrides/carbonitride) have been employed as an intriguing material for various environmental applications. This development is accredited to their unique properties, which include a vast surface area, strong electrical conductivity, fascinating photophysical properties, high mechanical properties, stability in an aqueous medium, high hydrophilicity, biocompatibility, ease of functionalization, and excellent thermal properties. MXenes act as a potential candidate in water desalination, energy storage devices such as electrodes of Li-ion batteries and pseudo capacitors, hydrogen production, sensors, and wastewater treatment. This review article deliberates the synthesis of MXene and nanocomposites of MXene and their photo-catalytic actions against various toxic pollutants such as organic dyes and heavy metals in wastewater. This review also precises the various preparation methods of MXene-based photocatalyst and the enhanced photocatalytic activity of MXene and MXene-based nanocomposites in wastewater treatment. Also, it details the attempts made to improve the photocatalytic activity of MXene-based nanocomposites in terms of their structural compositions. In addition, the merits and demerits of the MXenebased photocatalysts are deliberated, which may pave the way for future research in this arena.