On the correlation between thermal imagery and fugitive CH4 emissions from MSW landfills

被引:2
作者
Rodrigues, Marcela C. [1 ]
Silveira, Edgar A. [1 ]
Junior, Antonio C. P. Brasil [1 ]
机构
[1] Univ Brasilia, Mech Sci Grad Program, Lab Energy & Environm, Brasilia, Brazil
关键词
Infrared thermography; Biogas; Landfill; Heat transfer; Porous medium; Sustainable energy development; METHANE EMISSIONS;
D O I
10.1016/j.wasman.2023.05.005
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Landfill gas (LFG) is related to the biochemical processes generating heat and releasing CH4, CO2, and other gases in lower concentrations, which result in environmental impacts and risk of local explosion. Thermal infrared imagery (TIR) is employed to detect CH4 leakage as a risk control approach. However, the challenge for LFG leakage detection using TIR is establishing a relation between the gas flux and the ground temperature. This study evaluates the problem of a heated gas flowing through a porous medium column where the upward surface exchanges heat by radiation and convection to the environment. A heat transfer model that considers the upward LFG flow is proposed, and a sensibility analysis is developed to relate the flux to the ground temperature level in the condition of non-income solar radiation. An explicit equation to predict CH4 fugitive flow as a function of temperature anomalies of the ground was presented for the first time. The results show that the predicted ground surface temperatures are consistent with the literature's experimental observations. Moreover, the model was complementarily applied to a Brazilian landfill, with in situ TIR measurements in an area with a slightly fractured cover. In this field observation, the predicted CH4 flux was around 9025 g m(-2) d(-1). Model limitations concerning the soil homogeneity, the transient variation of atmospheric conditions or local pressure, and soil temperature difference in low-flux conditions (related to TIR-cameras accuracy) require further validation. Results could help landfill monitoring in conditions of a high-temperature ground anomaly in dry seasons.
引用
收藏
页码:163 / 170
页数:8
相关论文
共 26 条
  • [1] The development and trial of an unmanned aerial system for the measurement of methane flux from landfill and greenhouse gas emission hotspots
    Allen, Grant
    Hollingsworth, Peter
    Kabbabe, Khristopher
    Pitt, Joseph R.
    Mead, Mohammed I.
    Illingworth, Samuel
    Roberts, Gareth
    Bourn, Mark
    Shallcross, Dudley E.
    Percival, Carl J.
    [J]. WASTE MANAGEMENT, 2019, 87 : 883 - 892
  • [2] Barbosa L. de Q., 2014, REMEDIACO AREA DEGR
  • [3] Effective monitoring of landfills: flux measurements and thermography enhance efficiency and reduce environmental impact
    Battaglini, Raffaele
    Raco, Brunella
    Scozzari, Andrea
    [J]. JOURNAL OF GEOPHYSICS AND ENGINEERING, 2013, 10 (06)
  • [4] CARNEIRO G., 2002, THESIS MESTR U BRASI, V52, P1
  • [5] Cavalcanti M.M., 2013, APLICACAO METODOS GE
  • [6] Comparing laser-based open- and closed-path gas analyzers to measure methane fluxes using the eddy covariance method
    Detto, Matteo
    Verfaillie, Joseph
    Anderson, Frank
    Xu, Liukang
    Baldocchi, Dennis
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2011, 151 (10) : 1312 - 1324
  • [7] Diot M., 2000, INT LANDF RES S LUL
  • [8] Duffie JA, 1991, SOLAR ENG THERMAL PR, DOI [10.1002/9781119540328, DOI 10.1002/9781119540328]
  • [9] Eggleston H, 2006, IPCC GUIDELINES NATL
  • [10] Assessment of a landfill methane emission screening method using an unmanned aerial vehicle mounted thermal infrared camera - A field study
    Fjelsted, L.
    Christensen, A. G.
    Larsen, J. E.
    Kjeldsen, P.
    Scheutz, C.
    [J]. WASTE MANAGEMENT, 2019, 87 : 893 - 904