Well-posedness and dynamics for the von Karman equation with memory and nonlinear time-varying delay

被引:0
作者
Cui, Xiaona [1 ,3 ]
Li, Ke [1 ,2 ]
机构
[1] Henan Normal Univ, Dept Math & Informat Sci, Xinxiang, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou, Peoples R China
[3] Henan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Peoples R China
关键词
quasi-stability; time-varying delay; von Karman equation; well-posedness; ASYMPTOTIC-BEHAVIOR; GENERAL DECAY; BOUNDARY; SYSTEM; STABILITY; PLATE; VISCOELASTICITY; RATES;
D O I
10.1002/mma.9389
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with mathematical analysis for the viscoelastic von Karman equation with memory and time-varying delay. Based on the existence and uniqueness of the strong solution established by Galerkin method, the finite dimensional global attractor for the system without time-varying delay has been shown by using the quasi-stability theory. The difficulties for our desired well-posedness are the limiting of fourth-order derivative terms and the von Karman bracket term, which need some delicate estimates to achieve. The key point for the dynamics is to obtain the quasi-stability for gradient system, which needs the higher regularity of trajectory especially the von Karman bracket.
引用
收藏
页码:15481 / 15505
页数:25
相关论文
共 39 条
[1]   GLOBAL DECAY-RATES FOR THE SOLUTIONS TO A VONKARMAN PLATE WITHOUT GEOMETRIC CONDITIONS [J].
BRADLEY, ME ;
LASIECKA, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 181 (01) :254-276
[2]   Attractors for wave equations with degenerate memory [J].
Cavalcanti, M. M. ;
Fatori, L. H. ;
Ma, T. F. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (01) :56-83
[3]  
Chueshov I, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-87712-9
[4]  
Chueshov I, 2008, MEM AM MATH SOC, V195, pVIII
[5]   Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping [J].
Chueshov, Igor ;
Lasiecka, Irena .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (01) :42-86
[6]  
Ciarlet P., 2000, Theory of Shells
[7]  
Ciarlet P. G., 1980, Les equations de von Karman
[8]  
CIARLET PG, 1980, ARCH RATION MECH AN, V73, P349, DOI 10.1007/BF00247674
[9]   Asymptotics of viscoelastic materials with nonlinear density and memory effects [J].
Conti, M. ;
Ma, T. F. ;
Marchini, E. M. ;
Seminario Huertas, P. N. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (07) :4235-4259
[10]   VISCOELASTICITY WITH TIME-DEPENDENT MEMORY KERNELS, II: ASYMPTOTIC BEHAVIOR OF SOLUTIONS [J].
Conti, Monica ;
Danese, Valeria ;
Pata, Vittorino .
AMERICAN JOURNAL OF MATHEMATICS, 2018, 140 (06) :1687-1729