Curves of fixed gonality with many rational points

被引:0
作者
Vermeulen, Floris [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B, B-3001 Leuven, Belgium
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2023年 / 35卷 / 01期
关键词
EVERY GENUS;
D O I
10.5802/jtnb.1240
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an integer ? = 2 and an odd prime power q we show that for every large genus g there exists a non-singular curve C defined over F-q of genus g and gonality 7 and with exactly ?(q+1) F-q-rational points. This is the maximal number of rational points possible. This answers a recent conjecture by Faber-Grantham. Our methods are based on curves on toric surfaces and Poonen's work on squarefree values of polynomials.
引用
收藏
页码:135 / 149
页数:16
相关论文
共 16 条
[1]   A generalization of Baker's theorem [J].
Beelen, Peter .
FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (05) :558-568
[2]  
BRYANT R., IRREDUCIBILITY DISCR
[3]   Linear Pencils Encoded in the Newton Polygon [J].
Castryck, Wouter ;
Cools, Filip .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (10) :2998-3049
[4]  
Elkies ND, 2004, DUKE MATH J, V122, P399
[5]   On abelian covers of the projective line with fixed gonality and many rational points [J].
Faber, Xander ;
Vermeulen, Floris .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (10) :2211-2216
[6]   Binary curves of small fixed genus and gonality with many rational points [J].
Faber, Xander ;
Grantham, Jon .
JOURNAL OF ALGEBRA, 2022, 597 :24-46
[7]   Ternary and Quaternary Curves of Small Fixed Genus and Gonality With Many Rational Points [J].
Faber, Xander ;
Grantham, Jon .
EXPERIMENTAL MATHEMATICS, 2023, 32 (02) :337-349
[8]  
Gel'fand I.M., 1994, MATH THEORY APPL
[9]  
IHARA Y, 1981, J FS TOKYO, V28, P721
[10]  
KHOVANSKII AG, 1978, FUNKTSIONAL ANAL PRI, V12, P51