Intermittent antibiotic treatment of bacterial biofilms favors the rapid evolution of resistance

被引:41
作者
Usui, Masaru [1 ,2 ]
Yoshii, Yutaka [2 ]
Thiriet-Rupert, Stanislas [2 ]
Ghigo, Jean-Marc [2 ]
Beloin, Christophe [2 ]
机构
[1] Rakuno Gakuen Univ, Sch Vet Med, Dept Hlth & Environm Sci, Lab Food Microbiol & Food Safety, Hokkaido, Japan
[2] Univ Paris Cite, Inst Pasteur, Genet Biofilms Lab, UMR CNRS 6047, F-75015 Paris, France
关键词
ESCHERICHIA-COLI; PSEUDOMONAS-AERUGINOSA; STAPHYLOCOCCUS-AUREUS; IN-VITRO; TOLERANCE; AMINOGLYCOSIDE; PERSISTENCE; INFECTIONS; DAPTOMYCIN; THERAPY;
D O I
10.1038/s42003-023-04601-y
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bacterial antibiotic resistance is a global health concern of increasing importance and intensive study. Although biofilms are a common source of infections in clinical settings, little is known about the development of antibiotic resistance within biofilms. Here, we use experimental evolution to compare selection of resistance mutations in planktonic and biofilm Escherichia coli populations exposed to clinically relevant cycles of lethal treatment with the aminoglycoside amikacin. Consistently, mutations in sbmA, encoding an inner membrane peptide transporter, and fusA, encoding the essential elongation factor G, are rapidly selected in biofilms, but not in planktonic cells. This is due to a combination of enhanced mutation rate, increased adhesion capacity and protective biofilm-associated tolerance. These results show that the biofilm environment favors rapid evolution of resistance and provide new insights into the dynamic evolution of antibiotic resistance in biofilms. Mutations in sbmA and fusA are rapidly selected in biofilm but not planktonic E. coli when exposed to intermittent amikacin antibiotic treatment, which suggests that the biofilm environment favors rapid evolution of resistance.
引用
收藏
页数:16
相关论文
共 108 条
[1]   The evolutionary trajectories ofP. aeruginosain biofilm and planktonic growth modes exposed to ciprofloxacin: beyond selection of antibiotic resistance [J].
Ahmed, Marwa N. ;
Abdelsamad, Ahmed ;
Wassermann, Tina ;
Porse, Andreas ;
Becker, Janna ;
Sommer, Morten O. A. ;
Hoiby, Niels ;
Ciofu, Oana .
NPJ BIOFILMS AND MICROBIOMES, 2020, 6 (01)
[2]  
Ahmed MN, 2018, ANTIMICROB AGENTS CH, V62, DOI [10.1128/AAC.00320-18, 10.1128/aac.00320-18]
[3]   Antibiotic lock therapy for the conservative treatment of long-term intravenous catheter-related infections in adults and children: When and how to proceed? Guidelines for clinical practice 2020 [J].
Albert, Odile ;
Bonnet, Eric ;
Cassard, Bruno ;
Chambrier, Cecile ;
Charmillon, Alexandre ;
Diamantis, Sylvain ;
Gachot, Bertrand ;
Lafaurie, Mathieu ;
Lebeaux, David ;
Lucas, Nolwenn ;
Strady, Christophe ;
Toubiana, Julie ;
Stradyieb, Christophe .
INFECTIOUS DISEASES NOW, 2021, 51 (03) :236-246
[4]   Selection and Transmission of Antibiotic-Resistant Bacteria [J].
Andersson, Dan I. ;
Hughes, Diarmaid .
MICROBIOLOGY SPECTRUM, 2017, 5 (04)
[5]  
[Anonymous], 2006, METH DIL ANT SUSC TE
[6]  
Babosan Anamaria, 2022, Microlife, V3, puqac019, DOI [10.1093/femsml/uqac019, 10.1093/femsml/uqac019]
[7]   Gut biofilms: Bacteroides as model symbionts to study biofilm formation by intestinal anaerobes [J].
Bechon, Nathalie ;
Ghigo, Jean-Marc .
FEMS MICROBIOLOGY REVIEWS, 2022, 46 (02)
[8]   Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression [J].
Beloin, C ;
Valle, J ;
Latour-Lambert, P ;
Faure, P ;
Kzreminski, M ;
Balestrino, D ;
Haagensen, JAJ ;
Molin, S ;
Prensier, G ;
Arbeille, B ;
Ghigo, JM .
MOLECULAR MICROBIOLOGY, 2004, 51 (03) :659-674
[9]   The role of bacterial biofilms in chronic infections [J].
Bjarnsholt, Thomas .
APMIS, 2013, 121 :1-58
[10]   Evolutionary epidemiology models to predict the dynamics of antibiotic resistance [J].
Blanquart, Francois .
EVOLUTIONARY APPLICATIONS, 2019, 12 (03) :365-383