Regulatory effects of IRF4 on immune cells in the tumor microenvironment

被引:16
作者
Lu, Jing [1 ,2 ]
Liang, Taotao [1 ,2 ]
Li, Ping [3 ]
Yin, Qingsong [1 ,2 ]
机构
[1] Zhengzhou Univ, Affiliated Canc Hosp, Dept Hematol, Zhengzhou, Henan, Peoples R China
[2] Henan Canc Hosp, Zhengzhou, Henan, Peoples R China
[3] Univ Texas MD Anderson Canc Ctr, Dept Hematol, Houston, TX USA
基金
中国国家自然科学基金;
关键词
IRF4; tumor microenvironment; immunosuppressive cells; T cell exhaustion; immunoregulation; TRANSCRIPTION FACTOR IRF4; PLASMACYTOID DENDRITIC CELLS; T-CELLS; MACROPHAGE POLARIZATION; EXHAUSTION; DIFFERENTIATION; CANCER; BATF; EXPANSION; ANTIGEN;
D O I
10.3389/fimmu.2023.1086803
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The tumor microenvironment (TME) is implicated in tumorigenesis, chemoresistance, immunotherapy failure and tumor recurrence. Multiple immunosuppressive cells and soluble secreted cytokines together drive and accelerate TME disorders, T cell immunodeficiency and tumor growth. Thus, it is essential to comprehensively understand the TME status, immune cells involved and key transcriptional factors, and extend this knowledge to therapies that target dysfunctional T cells in the TME. Interferon regulatory factor 4 (IRF4) is a unique IRF family member that is not regulated by interferons, instead, is mainly induced upon T-cell receptor signaling, Toll-like receptors and tumor necrosis factor receptors. IRF4 is largely restricted to immune cells and plays critical roles in the differentiation and function of effector cells and immunosuppressive cells, particularly during clonal expansion and the effector function of T cells. However, in a specific biological context, it is also involved in the transcriptional process of T cell exhaustion with its binding partners. Given the multiple effects of IRF4 on immune cells, especially T cells, manipulating IRF4 may be an important therapeutic target for reversing T cell exhaustion and TME disorders, thus promoting anti-tumor immunity. This study reviews the regulatory effects of IRF4 on various immune cells in the TME, and reveals its potential mechanisms, providing a novel direction for clinical immune intervention.
引用
收藏
页数:11
相关论文
共 132 条
[11]   Distinct Transcriptional Programs Control Cross-Priming in Classical and Monocyte-Derived Dendritic Cells [J].
Briseno, Carlos G. ;
Haldar, Malay ;
Kretzer, Nicole M. ;
Wu, Xiaodi ;
Theisen, Derek J. ;
Wumesh, K. C. ;
Durai, Vivek ;
Grajales-Reyes, Gary E. ;
Iwata, Arifumi ;
Bagadia, Prachi ;
Murphy, Theresa L. ;
Murphy, Kenneth M. .
CELL REPORTS, 2016, 15 (11) :2462-2474
[12]   Molecular Insights Into Regulatory T-Cell Adaptation to Self, Environment, and Host Tissues: Plasticity or Loss of Function in Autoimmune Disease [J].
Brown, Cheryl Y. ;
Sadlon, Timothy ;
Hope, Christopher M. ;
Wong, Ying Y. ;
Wong, Soon ;
Liu, Ning ;
Withers, Holly ;
Brown, Katherine ;
Bandara, Veronika ;
Gundsambuu, Batjargal ;
Pederson, Stephen ;
Breen, James ;
Robertson, Sarah Anne ;
Forrest, Alistair ;
Beyer, Marc ;
Barry, Simon Charles .
FRONTIERS IN IMMUNOLOGY, 2020, 11
[13]   The development of inflammatory TH-17 cells requires interferon-regulatory factor 4 [J].
Bruestle, Anne ;
Heink, Sylvia ;
Huber, Magdalena ;
Rosenplaenter, Christine ;
Stadelmann, Christine ;
Yu, Philipp ;
Arpaia, Enrico ;
Mak, Tak W. ;
Kamradt, Thomas ;
Lohoff, Michael .
NATURE IMMUNOLOGY, 2007, 8 (09) :958-966
[14]   How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions [J].
Bruger, Annika M. ;
Dorhoi, Anca ;
Esendagli, Gunes ;
Barczyk-Kahlert, Katarzyna ;
van der Bruggen, Pierre ;
Lipoldova, Marie ;
Perecko, Tomas ;
Santibanez, Juan ;
Saraiva, Margarida ;
Van Ginderachter, Jo A. ;
Brandau, Sven .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2019, 68 (04) :631-644
[15]   Th17 Cells and the IL-23/IL-17 Axis in the Pathogenesis of Periodontitis and Immune-Mediated Inflammatory Diseases [J].
Bunte, Kuebra ;
Beikler, Thomas .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (14)
[16]   Tumor Microenvironment and its Implications for Antitumor Immunity in Cholangiocarcinoma: Future Perspectives for Novel Therapies [J].
Cao, Hengsong ;
Huang, Tian ;
Dai, Mingrui ;
Kong, Xiangyi ;
Liu, Hanyuan ;
Zheng, Zhiying ;
Sun, Guoqiang ;
Sun, Guangshun ;
Rong, Dawei ;
Jin, Zehua ;
Tang, Weiwei ;
Xia, Yongxiang .
INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2022, 18 (14) :5369-5390
[17]   Transcriptional Regulators of T Helper 17 Cell Differentiation in Health and Autoimmune Diseases [J].
Capone, Alessia ;
Volpe, Elisabetta .
FRONTIERS IN IMMUNOLOGY, 2020, 11
[18]   Pharmacologic Activation of LXR Alters the Expression Profile of Tumor-Associated Macrophages and the Abundance of Regulatory T Cells in the Tumor Microenvironment [J].
Carbo, Jose M. ;
Leon, Theresa E. ;
Font-Diaz, Joan ;
De la Rosa, Juan Vladimir ;
Castrillo, Antonio ;
Picard, Felix R. ;
Staudenraus, Daniel ;
Huber, Magdalena ;
Cedo, Lidia ;
Carles Escola-Gil, Joan ;
Campos, Lucia ;
Bakiri, Latifa ;
Wagner, Erwin F. ;
Caelles, Carme ;
Stratmann, Thomas ;
Van Ginderachter, Jo A. ;
Valledor, Annabel F. .
CANCER RESEARCH, 2021, 81 (04) :968-985
[19]   Dendritic Cell Vaccines: A Promising Approach in the Fight against Ovarian Cancer [J].
Caro, Aarushi Audhut ;
Deschoemaeker, Sofie ;
Allonsius, Lize ;
Coosemans, An ;
Laoui, Damya .
CANCERS, 2022, 14 (16)
[20]   NR4A transcription factors limit CAR T cell function in solid tumours [J].
Chen, Joyce ;
Lopez-Moyado, Isaac F. ;
Seo, Hyungseok ;
Lio, Chan-Wang J. ;
Hempleman, Laura J. ;
Sekiya, Takashi ;
Yoshimura, Akihiko ;
Scott-Browne, James P. ;
Rao, Anjana .
NATURE, 2019, 567 (7749) :530-+