Solvability of some fractional differential equations in the Holder space Hγ(R+) and their numerical treatment via measures of noncompactness

被引:0
|
作者
Kayvanloo, Hojjatollah Amiri [1 ]
Mursaleen, Mohammad [2 ,3 ]
Mehrabinezhad, Mohammad [1 ]
Najafabadi, Farzaneh Pouladi [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Mashhad Branch, Mashhad, Razavi Khorasan, Iran
[2] China Med Univ Taiwan, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[3] Aligarh Muslim Univ, Aligarh 202002, Uttar Pradesh, India
关键词
Darbo's theorem; Measures of noncompactness; Fractional differential equations; Homotopy perturbation method; Integral equation; HOMOTOPY PERTURBATION METHOD; BOUNDARY-VALUE PROBLEM; FUNCTIONAL INTEGRAL-EQUATIONS; INFINITE SYSTEM; EXISTENCE; ALGORITHM; FAMILY; ORDER;
D O I
10.1007/s40096-022-00458-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following fractional boundary value problem: {D-alpha upsilon(t)+f(t,upsilon(t)) = 0, alpha is an element of(1,2], 0<t<+infinity, upsilon(0)=0, D alpha-1 upsilon(infinity) = lambda integral(tau)(0) upsilon(t)dt. The goal of this paper is to bring forward a new family of measures of noncompactness and prove a fixed point theorem of Darbo type in the Holder space H-gamma(R+). Moreover, we provide an example which supports our main result and in carrying out an proximate solution for the mentioned example with high precision we apply several numerical methods.
引用
收藏
页码:387 / 397
页数:11
相关论文
共 30 条