Invariant data-driven subgrid stress modeling on anisotropic grids for large eddy simulation

被引:5
作者
Prakash, Aviral [1 ]
Jansen, Kenneth E. [1 ]
Evans, John A. [1 ]
机构
[1] Univ Colorado Boulder, Boulder, CO 80309 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
Large eddy simulation; Data-driven turbulence modeling; Galilean invariance; Rotational and reflectional invariance; Unit invariance; Filter anisotropy; TURBULENT CHANNEL FLOW; DIRECT NUMERICAL-SIMULATION; SMAGORINSKY MODEL; SCALE MODEL; DECONVOLUTION;
D O I
10.1016/j.cma.2024.116807
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a new approach for constructing data -driven subgrid stress models for large eddy simulation of turbulent flows using anisotropic grids. The key to our approach is a Galilean, rotationally, reflectionally and unit invariant model form that also embeds filter anisotropy in such a way that an important subgrid stress identity is satisfied. We use this model form to train a data -driven subgrid stress model using only a small amount of anisotropically filtered DNS data and a simple and inexpensive neural network architecture. A priori and a posteriori tests indicate that the trained data -driven model generalizes well to filter anisotropy ratios, Reynolds numbers and flow physics outside the training dataset.
引用
收藏
页数:27
相关论文
共 58 条
  • [21] A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence
    Li, Yi
    Perlman, Eric
    Wan, Minping
    Yang, Yunke
    Meneveau, Charles
    Burns, Randal
    Chen, Shiyi
    Szalay, Alexander
    Eyink, Gregory
    [J]. JOURNAL OF TURBULENCE, 2008, 9 (31): : 1 - 29
  • [22] Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
    Ling, Julia
    Kurzawski, Andrew
    Templeton, Jeremy
    [J]. JOURNAL OF FLUID MECHANICS, 2016, 807 : 155 - 166
  • [23] A neural network approach for the blind deconvolution of turbulent flows
    Maulik, R.
    San, O.
    [J]. JOURNAL OF FLUID MECHANICS, 2017, 831 : 151 - 181
  • [24] Direct numerical simulation of turbulent channel flow up to Reτ=590
    Moser, RD
    Kim, J
    Mansour, NN
    [J]. PHYSICS OF FLUIDS, 1999, 11 (04) : 943 - 945
  • [25] Subgrid-scale stress modelling based on the square of the velocity gradient tensor
    Nicoud, F
    Ducros, F
    [J]. FLOW TURBULENCE AND COMBUSTION, 1999, 62 (03) : 183 - 200
  • [26] Using singular values to build a subgrid-scale model for large eddy simulations
    Nicoud, Franck
    Toda, Hubert Baya
    Cabrit, Olivier
    Bose, Sanjeeb
    Lee, Jungil
    [J]. PHYSICS OF FLUIDS, 2011, 23 (08)
  • [27] Parmar Basu, 2020, AIAA SCITECH 2020 FO
  • [28] S-frame discrepancy correction models for data-informed Reynolds stress closure
    Peters, Eric L.
    Balin, Riccardo
    Jansen, Kenneth E.
    Doostan, Alireza
    Evans, John A.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 448
  • [29] A grid-independent length scale for large-eddy simulations
    Piomelli, Ugo
    Rouhi, Amirreza
    Geurts, Bernard J.
    [J]. JOURNAL OF FLUID MECHANICS, 2015, 766 : 499 - 527
  • [30] Pope S., 2001, Turbulent Flows, DOI [10.1017/CBO9780511840531, DOI 10.1017/CBO9780511840531]