Prerequisite Structure Discovery In Intelligent Tutoring Systems

被引:0
作者
Annabi, Louis [1 ,2 ]
Sao Mai Nguyen [1 ,2 ]
机构
[1] Inst Polytech Paris, Flowers Team, ENSTA Paris, U2IS, Palaiseau, France
[2] INRIA, Palaiseau, France
来源
2023 IEEE INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING, ICDL | 2023年
关键词
Intelligent Tutoring Systems; Knowledge Tracing; Knowledge Structure Discovery;
D O I
10.1109/ICDL55364.2023.10364416
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
This paper addresses the importance of Knowledge Structure (KS) and Knowledge Tracing (KT) in improving the recommendation of educational content in intelligent tutoring systems. The KS represents the relations between different Knowledge Components (KCs), while KT predicts a learner's success based on her past history. The contribution of this research includes proposing a KT model that incorporates the KS as a learnable parameter, enabling the discovery of the underlying KS from learner trajectories. The quality of the uncovered KS is assessed by using it to recommend content and evaluating the recommendation algorithm with simulated students.
引用
收藏
页码:176 / 181
页数:6
相关论文
共 29 条
[1]   Knowledge Tracing: A Survey [J].
Abdelrahman, Ghodai ;
Wang, Qing ;
Nunes, Bernardo .
ACM COMPUTING SURVEYS, 2023, 55 (11)
[2]  
Baker F. B, 2001, BASICS ITEM RESPONSE
[3]   Social robots for education: A review [J].
Belpaeme, Tony ;
Kennedy, James ;
Ramachandran, Aditi ;
Scassellati, Brian ;
Tanaka, Fumihide .
SCIENCE ROBOTICS, 2018, 3 (21)
[4]   Prerequisite-Driven Deep Knowledge Tracing [J].
Chen, Penghe ;
Lu, Yu ;
Zheng, Vincent W. ;
Pian, Yang .
2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, :39-48
[5]  
Clement B., 2015, Journal of Educational Data Mining (JEDM), V7, P20, DOI DOI 10.5281/ZENODO.3554667
[6]  
Clement B., 2016, A comparison of automatic teaching strategies for heterogeneous student populations
[7]  
Clement Benjamin, 2018, Adaptive Personalization of Pedagogical Sequences using Machine Learning
[8]  
CORBETT AT, 1994, USER MODEL USER-ADAP, V4, P253, DOI 10.1007/BF01099821
[9]  
Deci EL, 1975, INTRINSIC MOTIVATION, DOI DOI 10.1007/978-1-4613-4446-9
[10]   Where's the Reward?: A Review of Reinforcement Learning for Instructional Sequencing [J].
Doroudi, Shayan ;
Aleven, Vincent ;
Brunskill, Emma .
INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE IN EDUCATION, 2019, 29 (04) :568-620