Machine learning approach to surface plasmon resonance bio-chemical sensor based on nanocarbon allotropes for formalin detection in water

被引:21
作者
Ansari, Gufranullah [1 ]
Pal, Amrindra [2 ]
Srivastava, Alok K. [3 ]
Verma, Gaurav [1 ,4 ,5 ]
机构
[1] Panjab Univ, Dr Shanti Swarup Bhatnagar Univ Inst Chem Engn & T, Dept Chem Engn, Chandigarh 160014, India
[2] Natl Res Council Nepal, Kathmandu 44600, Nepal
[3] Def Mat & Stores R&D Estab DRDO, Kanpur 208013, India
[4] Panjab Univ, Energy Res Ctr, Chandigarh 160014, India
[5] Panjab Univ, Univ Inst Emerging Areas Sci & Technol, Ctr Nanosci & Nanotechnol, Chandigarh 160014, India
关键词
Carbon nanotube; Surface plasmon resonance; Formalin detection; Machine learning; Graphene; CARBON NANOTUBES; SPR SENSOR; WAVE-GUIDE; FORMALDEHYDE; AIR; NANOPARTICLES; LAYER;
D O I
10.1016/j.sbsr.2023.100605
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This article investigates the design of a surface plasmon resonance (SPR) sensor that utilizes carbon nanotubes (CNT) and graphene to detect formalin concentration in water. The proposed sensor's design optimization and performance evaluation are achieved by implementing Gradient Boosting Regression (GBR), a machine learning (ML) algorithm, and the artificial hummingbird algorithm. An iterative transfer matrix technique is employed to create training and test sets for machine learning analysis, and a dataset of 8505 x 8 is obtained. The optimized thickness of Ag, CNT, and graphene 51.71 nm, 0.489 nm, and 4.32 nm were obtained using the artificial hummingbird algorithm. The results demonstrate that the SPR sensor achieves excellent reflectance curves, leading to a significant increase in detection sensitivity of 340.44 deg./RIU. Other characteristic parameters such as detection accuracy (DA), full width at half maximum (FWHM), and figure of merit (FoM) have also been evaluated.
引用
收藏
页数:11
相关论文
共 66 条
[1]  
Alghamdi SJ., 2023, J UMM AL QURA U ENG, V14, P95, DOI [10.1007/s43995-023-00022-4, DOI 10.1007/S43995-023-00022-4]
[2]  
Ali A.N.M.A., 2013, J. South Asian Stud, V1, P1
[3]   A theoretical analysis of refractive index sensor with improved sensitivity using titanium dioxide, graphene, and antimonene grating: Pseudomonas bacteria detection [J].
Aliqab, Khaled ;
Uniyal, Arun ;
Srivastava, Gaurav ;
Muduli, Arjuna ;
Alsharari, Meshari ;
Armghan, Ammar .
MEASUREMENT, 2023, 216
[4]  
Aljeddani Sadiah Mohammed Ali, 2023, Journal of Umm AlQura University for Engineering and Architecture, DOI [10.1007/s43995-023-00018-0, DOI 10.1007/S43995-023-00018-0]
[5]   Development of a biosensor based on a surface plasmon resonance structure comprising strontium titanate, graphene and affinity layers for malaria diagnosis [J].
Almawgani, Abdulkarem H. M. ;
Taya, Sofyan A. ;
Abutailkh, Mariam A. ;
Abohassan, Khedr M. ;
Hindi, Ayman Taher ;
Colak, Ilhami ;
Pal, Amrindra ;
Patel, Shobhit K. .
MODERN PHYSICS LETTERS B, 2023, 37 (36)
[6]   Creatinine Detection by Surface Plasmon Resonance Sensor Using Layers of Cerium Oxide and Graphene Over Conventional Kretschmann Configuration [J].
Almawgani, Abdulkarem H. M. ;
Uniyal, Arun ;
Sarkar, Partha ;
Srivastava, Gaurav ;
Alzahrani, Ahmad ;
Taya, Sofyan A. ;
Muduli, Arjuna ;
Pal, Amrindra .
PLASMONICS, 2023, 18 (05) :1743-1752
[7]   Comparative analysis of breast cancer detection using machine learning and biosensors [J].
Amethiya, Yash ;
Pipariya, Prince ;
Patel, Shlok ;
Shah, Manan .
INTELLIGENT MEDICINE, 2022, 2 (02) :69-81
[8]   Detection of hemoglobin concentration in human blood samples using a zinc oxide nanowire and graphene layer heterostructure based refractive index biosensor [J].
Ansari, Gufranullah ;
Pal, Amrindra ;
Srivastava, Alok K. ;
Verma, Gaurav .
OPTICS AND LASER TECHNOLOGY, 2023, 164
[9]   Properties that Influence the Specific Surface Areas of Carbon Nanotubes and Nanofibers [J].
Birch, M. Eileen ;
Ruda-Eberenz, Toni A. ;
Chai, Ming ;
Andrews, Ronnee ;
Hatfield, Randal L. .
ANNALS OF OCCUPATIONAL HYGIENE, 2013, 57 (09) :1148-1166
[10]   Machine Learning Regression Approach to the Nanophotonic Waveguide Analyses [J].
Chugh, Sunny ;
Ghosh, Souvik ;
Gulistan, Aamir ;
Rahman, B. M. A. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (24) :6080-6089