Free-standing membrane incorporating single-atom catalysts for ultrafast electroreduction of low-concentration nitrate

被引:70
作者
Wang, Xiaoxiong [1 ,2 ]
Wu, Xuanhao [2 ,3 ]
Ma, Wen [2 ,4 ]
Zhou, Xuechen [2 ,5 ]
Zhang, Shuo [2 ,6 ]
Huang, Dahong [2 ,7 ]
Winter, Lea R. [2 ]
Kim, Jae-Hong [2 ]
Elimelech, Menachem [2 ]
机构
[1] Tsinghua Univ, Shenzhen Int Grad Sch, Inst Ocean Engn, Shenzhen 518055, Peoples R China
[2] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06520 USA
[3] Zhejiang Univ, Dept Environm Engn, Hangzhou 310058, Peoples R China
[4] Univ Sherbrooke, Dept Chem & Biotechnol Engn, Sherbrooke, PQ J1K 2R1, Canada
[5] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
[6] Nankai Univ, Tianjin Key Lab Environm Remediat & Pollut Contro, Minist Educ Key Lab Pollut Processes & Environm C, Coll Environm Sci & Engn, Tianjin 300350, Peoples R China
[7] Dongguan Univ Technol, Sch Environm & Civil Engn, Dongguan 523808, Guangdong, Peoples R China
关键词
low-concentration nitrate reduction; free-standing electrified membrane; single-atom catalyst; carbonaceous interwoven structure; activity and selectivity improvement; WATER-TREATMENT; REDUCTION;
D O I
10.1073/pnas.2217703120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The release of wastewaters containing relatively low levels of nitrate (NO3-) results in sufficient contamination to induce harmful algal blooms and to elevate drinking water NO3- concentrations to potentially hazardous levels. In particular, the facile triggering of algal blooms by ultra-low concentrations of NO3- necessitates the development of efficient methods for NO3- destruction. However, promising electrochemical methods suffer from weak mass transport under low reactant concentrations, resulting in long treatment times (on the order of hours) for complete NO3- destruction. In this study, we present flow-through electrofiltration via an electrified membrane incorporating nonprecious metal single-atom catalysts for NO3- reduction activity enhancement and selectivity modification, achieving near-complete removal of ultra-low concentration NO3- (10 mg-N L-1) with a residence time of only a few seconds (10 s). By anchoring Cu single atoms supported on N-doped carbon in a carbon nanotube interwoven framework, we fabricate a free-standing carbonaceous membrane featuring high conductivity, permeability, and flexibility. The membrane achieves over 97% NO3- removal with high N-2 selectivity of 86% in a single-pass electrofiltration, which is a significant improvement over flow-by operation (30% NO3- removal with 7% N-2 selectivity). This high NO3- reduction performance is attributed to the greater adsorption and transport of nitric oxide under high molecular collision frequency coupled with a balanced supply of atomic hydrogen through H-2 dissociation during electrofiltration. Overall, our findings provide a paradigm of applying a flow-through electrified membrane incorporating single-atom catalysts to improve the rate and selectivity of NO3- reduction for efficient water purification.
引用
收藏
页数:9
相关论文
共 53 条
[1]   Drivers of Disinfection Byproduct Cytotoxicity in US Drinking Water: Should Other DBPs Be Considered for Regulation? [J].
Allen, Joshua M. ;
Plewa, Michael J. ;
Wagner, Elizabeth D. ;
Wei, Xiao ;
Bokenkamp, Katherine ;
Hur, Kyu ;
Jia, Ai ;
Liberatore, Hannah K. ;
Lee, Chih-Fen T. ;
Shirkhani, Raha ;
Krasner, Stuart W. ;
Richardson, Susan D. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (01) :392-402
[2]   Addressing agricultural nitrogen losses in a changing climate [J].
Bowles, Timothy M. ;
Atallah, Shady S. ;
Campbell, Eleanor E. ;
Gaudin, Amelie C. M. ;
Wieder, William R. ;
Grandy, A. Stuart .
NATURE SUSTAINABILITY, 2018, 1 (08) :399-408
[3]   The Prospect of Electrochemical Technologies Advancing Worldwide Water Treatment [J].
Chaplin, Brian P. .
ACCOUNTS OF CHEMICAL RESEARCH, 2019, 52 (03) :596-604
[4]   Combination of Pd-Cu Catalysis and Electrolytic H2 Evolution for Selective Nitrate Reduction Using Protonated Polypyrrole as a Cathode [J].
Chen, Chen ;
Li, Kan ;
Li, Chen ;
Sun, Tonghua ;
Jia, Jinping .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (23) :13868-13877
[5]   Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst [J].
Chen, Feng-Yang ;
Wu, Zhen-Yu ;
Gupta, Srishti ;
Rivera, Daniel J. ;
Lambeets, Sten, V ;
Pecaut, Stephanie ;
Kim, Jung Yoon Timothy ;
Zhu, Peng ;
Finfrock, Y. Zou ;
Meira, Debora Motta ;
King, Graham ;
Gao, Guanhui ;
Xu, Wenqian ;
Cullen, David A. ;
Zhou, Hua ;
Han, Yimo ;
Perea, Daniel E. ;
Muhich, Christopher L. ;
Wang, Haotian .
NATURE NANOTECHNOLOGY, 2022, 17 (07) :759-+
[6]   Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst [J].
Chen, Gao-Feng ;
Yuan, Yifei ;
Jiang, Haifeng ;
Ren, Shi-Yu ;
Ding, Liang-Xin ;
Ma, Lu ;
Wu, Tianpin ;
Lu, Jun ;
Wang, Haihui .
NATURE ENERGY, 2020, 5 (08) :605-613
[7]   Copper single-atom catalyst as a high-performance electrocatalyst for nitrate-ammonium conversion [J].
Chen, Huihuang ;
Zhang, Chunqing ;
Sheng, Li ;
Wang, Miaomiao ;
Fu, Weng ;
Gao, Shuai ;
Zhang, Zhirong ;
Chen, Shaoqing ;
Si, Rui ;
Wang, Lianzhou ;
Yang, Bo .
JOURNAL OF HAZARDOUS MATERIALS, 2022, 434
[8]   Efficient electrocatalytic valorization of chlorinated organic water pollutant to ethylene [J].
Choi, Chungseok ;
Wang, Xiaoxiong ;
Kwon, Soonho ;
Hart, James L. ;
Rooney, Conor L. ;
Harmon, Nia J. ;
Sam, Quynh P. ;
Cha, Judy J. ;
Goddard, William A., III ;
Elimelech, Menachem ;
Wang, Hailiang .
NATURE NANOTECHNOLOGY, 2023, 18 (02) :160-+
[9]   The remarkable effect of oxygen on the N2 selectivity of water catalytic denitrification by hydrogen [J].
Constantinou, Costas L. ;
Costa, Costas N. ;
Efstathiou, Angelos M. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (03) :950-956
[10]   Earth-abundant elements a sustainable solution for electrocatalytic reduction of nitrate [J].
Fajardo, Ana S. ;
Westerhoff, Paul ;
Sanchez-Sanchez, Carlos M. ;
Garcia-Segura, Sergi .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 281 (281)