How to characterize figures of merit of two-dimensional photodetectors

被引:276
作者
Wang, Fang [1 ,2 ]
Zhang, Tao [1 ,2 ]
Xie, Runzhang [1 ]
Wang, Zhen [1 ]
Hu, Weida [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
GENERATION;
D O I
10.1038/s41467-023-37635-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The lack of a standardized approach for the characterization of the performance of 2D photodetectors represents an important obstacle towards their industrialization. Here, the authors propose practical guidelines to characterize their figures of merit and analyse common situations where their performance can be misestimated. Photodetectors based on two-dimensional (2D) materials have been the focus of intensive research and development over the past decade. However, a gap has long persisted between fundamental research and mature applications. One of the main reasons behind this gap has been the lack of a practical and unified approach for the characterization of their figures of merit, which should be compatible with the traditional performance evaluation system of photodetectors. This is essential to determine the degree of compatibility of laboratory prototypes with industrial technologies. Here we propose general guidelines for the characterization of the figures of merit of 2D photodetectors and analyze common situations when the specific detectivity, responsivity, dark current, and speed can be misestimated. Our guidelines should help improve the standardization and industrial compatibility of 2D photodetectors.
引用
收藏
页数:9
相关论文
共 14 条
[1]  
Born M, 1999, PRINCIPLES OPTICS EL
[2]  
Budzier H. G., 2011, THERMAL INFRARED SEN
[3]   Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature [J].
Bullock, James ;
Amani, Matin ;
Cho, Joy ;
Chen, Yu-Ze ;
Ahn, Geun Ho ;
Adinolfi, Valerio ;
Shrestha, Vivek Raj ;
Gao, Yang ;
Crozier, Kenneth B. ;
Chueh, Yu-Lun ;
Javey, Ali .
NATURE PHOTONICS, 2018, 12 (10) :601-+
[4]   Photocurrent generation with two-dimensional van der Waals semiconductors [J].
Buscema, Michele ;
Island, Joshua O. ;
Groenendijk, Dirk J. ;
Blanter, Sofya I. ;
Steele, Gary A. ;
van der Zant, Herre S. J. ;
Castellanos-Gomez, Andres .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (11) :3691-3718
[5]   Unipolar barrier photodetectors based on van der Waals heterostructures [J].
Chen, Yunfeng ;
Wang, Yang ;
Wang, Zhen ;
Gu, Yue ;
Ye, Yan ;
Chai, Xuliang ;
Ye, Jiafu ;
Chen, Yan ;
Xie, Runzhang ;
Zhou, Yi ;
Hu, Zhigao ;
Li, Qing ;
Zhang, Lili ;
Wang, Fang ;
Wang, Peng ;
Miao, Jinshui ;
Wang, Jianlu ;
Chen, Xiaoshuang ;
Lu, Wei ;
Zhou, Peng ;
Hu, Weida .
NATURE ELECTRONICS, 2021, 4 (05) :357-363
[6]   Photogating in Low Dimensional Photodetectors [J].
Fang, Hehai ;
Hu, Weida .
ADVANCED SCIENCE, 2017, 4 (12)
[7]   Accurate characterization of next-generation thin-film photodetectors [J].
Fang, Yanjun ;
Armin, Ardalan ;
Meredith, Paul ;
Huang, Jinsong .
NATURE PHOTONICS, 2019, 13 (01) :1-4
[8]  
John D., 2015, FUNDAMENTALS INFRARE
[9]   Current status and technological prospect of photodetectors based on two-dimensional materials [J].
Konstantatos, Gerasimos .
NATURE COMMUNICATIONS, 2018, 9
[10]   Progress, Challenges, and Opportunities for 2D Material Based Photodetectors [J].
Long, Mingsheng ;
Wang, Peng ;
Fang, Hehai ;
Hu, Weida .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (19)