Synthesis of Large-Area GeS Thin Films with the Assistance of Pre- deposited Amorphous Nanostructured GeS Films: Implications for Electronic and Optoelectronic Applications

被引:3
作者
Zhang, Qinqiang [1 ]
Matsumura, Ryo [1 ]
Fukata, Naoki [1 ,2 ]
机构
[1] Natl Inst Mat Sci NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, Tsukuba, Ibaraki 3050044, Japan
[2] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058573, Japan
关键词
large-area films; germanium monosulfide; two-dimensional layered semiconductors; physical vapor transport; non-equilibrium growth; HIGH-PERFORMANCE; SOLAR-CELLS; NANOSHEETS; GERMANIUM; PHOTODETECTORS; STABILITY; GROWTH; SNS; NANORIBBONS; INTERFACE;
D O I
10.1021/acsanm.3c00669
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Germanium monosulfide as a layered material analogous to black phosphorus has recently been synthesized in layers up to several square micrometers in area using a physical vapor transport process. However, single-crystalline GeS tends to be sparsely, haphazardly, and discretely nucleated on the target substrate. This phenomenon has hitherto impeded the development of applications since it limits the obtainable size of crystalline GeS films. In this study, we investigate a different heating recipe for synthesizing continuous large-area GeS without the use of metal catalysts. By laying down a pre-deposited amorphous nanostructured GeS film, a polycrystalline GeS film of the order of square centimeters can be attained using a purpose-built vapor transport equipment. This growth process can be used to fabricate a continuous polycrystalline GeS film (1 cm x 1.5 cm) on different substrates such as SiO2/Si or mica. The observed minimum thickness of polycrystalline GeS films is around 100 nm. Large-area GeS films synthesized on a mica substrate can also be easily exfoliated and transferred onto chosen substrates, giving them significant potential for use in next-generation electronic and optoelectronic applications. This method may also be useful for synthesizing other large-area chalcogenide materials.
引用
收藏
页码:6920 / 6928
页数:9
相关论文
共 60 条
  • [51] ANISOTROPY OF THE INTRINSIC PHOTOCONDUCTIVITY OF GES
    WILEY, JD
    PENNINGTON, S
    SCHONHERR, E
    [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1979, 96 (01): : K43 - K46
  • [52] OPTICAL-ABSORPTION BAND EDGE IN SINGLE-CRYSTAL GES
    WILEY, JD
    BREITSCHWERDT, A
    SCHONHERR, E
    [J]. SOLID STATE COMMUNICATIONS, 1975, 17 (03) : 355 - 359
  • [53] Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses
    Xia, Jing
    Li, Xuan-Ze
    Huang, Xing
    Mao, Nannan
    Zhu, Dan-Dan
    Wang, Lei
    Xu, Hua
    Meng, Xiang-Min
    [J]. NANOSCALE, 2016, 8 (04) : 2063 - 2070
  • [54] GeSe Thin-Film Solar Cells Fabricated by Self-Regulated Rapid Thermal Sublimation
    Xue, Ding-Jiang
    Lui, Shun-Chang
    Dai, Chen-Min
    Chen, Shiyou
    He, Chao
    Zhao, Lu
    Hu, Jin-Song
    Wan, Li-Jun
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (02) : 958 - 965
  • [55] Anisotropic Photoresponse Properties of Single Micrometer-Sized GeSe Nanosheet
    Xue, Ding-Jiang
    Tan, Jiahui
    Hu, Jin-Song
    Hu, Wenping
    Guo, Yu-Guo
    Wan, Li-Jun
    [J]. ADVANCED MATERIALS, 2012, 24 (33) : 4528 - 4533
  • [56] ELECTRICAL AND OPTICAL PROPERTIES OF GES
    YABUMOTO, T
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1958, 13 (06) : 559 - 562
  • [57] Atomistic processes in the early stages of thin-film growth
    Zhang, ZY
    Lagally, MG
    [J]. SCIENCE, 1997, 276 (5311) : 377 - 383
  • [58] A Growth Mechanism for Free-Standing Vertical Graphene
    Zhao, Jiong
    Shaygan, Mehrdad
    Eckert, Juergen
    Meyyappan, M.
    Ruemmeli, Mark H.
    [J]. NANO LETTERS, 2014, 14 (06) : 3064 - 3071
  • [59] Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories
    Zheng, Haimei
    Smith, Rachel K.
    Jun, Young-wook
    Kisielowski, Christian
    Dahmen, Ulrich
    Alivisatos, A. Paul
    [J]. SCIENCE, 2009, 324 (5932) : 1309 - 1312
  • [60] Zheng X., 2022, NAT NANOTECHNOL, V18, P55