Synthesis of Large-Area GeS Thin Films with the Assistance of Pre- deposited Amorphous Nanostructured GeS Films: Implications for Electronic and Optoelectronic Applications

被引:3
作者
Zhang, Qinqiang [1 ]
Matsumura, Ryo [1 ]
Fukata, Naoki [1 ,2 ]
机构
[1] Natl Inst Mat Sci NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, Tsukuba, Ibaraki 3050044, Japan
[2] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058573, Japan
关键词
large-area films; germanium monosulfide; two-dimensional layered semiconductors; physical vapor transport; non-equilibrium growth; HIGH-PERFORMANCE; SOLAR-CELLS; NANOSHEETS; GERMANIUM; PHOTODETECTORS; STABILITY; GROWTH; SNS; NANORIBBONS; INTERFACE;
D O I
10.1021/acsanm.3c00669
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Germanium monosulfide as a layered material analogous to black phosphorus has recently been synthesized in layers up to several square micrometers in area using a physical vapor transport process. However, single-crystalline GeS tends to be sparsely, haphazardly, and discretely nucleated on the target substrate. This phenomenon has hitherto impeded the development of applications since it limits the obtainable size of crystalline GeS films. In this study, we investigate a different heating recipe for synthesizing continuous large-area GeS without the use of metal catalysts. By laying down a pre-deposited amorphous nanostructured GeS film, a polycrystalline GeS film of the order of square centimeters can be attained using a purpose-built vapor transport equipment. This growth process can be used to fabricate a continuous polycrystalline GeS film (1 cm x 1.5 cm) on different substrates such as SiO2/Si or mica. The observed minimum thickness of polycrystalline GeS films is around 100 nm. Large-area GeS films synthesized on a mica substrate can also be easily exfoliated and transferred onto chosen substrates, giving them significant potential for use in next-generation electronic and optoelectronic applications. This method may also be useful for synthesizing other large-area chalcogenide materials.
引用
收藏
页码:6920 / 6928
页数:9
相关论文
共 60 条
  • [1] Black Phosphorus: Narrow Gap, Wide Applications
    Castellanos-Gomez, Andres
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (21): : 4280 - 4291
  • [2] PRESSURE-DEPENDENCE OF RAMAN-SPECTRA OF 4-6 LAYER COMPOUNDS GES AND GESE
    CHANDRASEKHAR, HR
    HUMPHREYS, RG
    CARDONA, M
    [J]. PHYSICAL REVIEW B, 1977, 16 (06): : 2981 - 2983
  • [3] Solution Synthesis of Ultrathin Single-Crystalline SnS Nanoribbons for Photodetectors via Phase Transition and Surface Processing
    Deng, Zhengtao
    Cao, Di
    He, Jin
    Lin, Su
    Lindsay, Stuart M.
    Liu, Yan
    [J]. ACS NANO, 2012, 6 (07) : 6197 - 6207
  • [4] Interfacial Strain Engineering in Wide-Bandgap GeS Thin Films for Photovoltaics
    Feng, Mingjie
    Liu, Shun-Chang
    Hu, Liyan
    Wu, Jinpeng
    Liu, Xianhu
    Xue, Ding-Jiang
    Hu, Jin-Song
    Wan, Li-Jun
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (25) : 9664 - 9671
  • [5] CDTE SOLAR-CELLS WITH EFFICIENCIES OVER 15-PERCENT
    FEREKIDES, C
    BRITT, J
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1994, 35 (1-4) : 255 - 262
  • [6] Ab initio calculation of vibrational spectra of orthorhombic IV-VI layered crystals
    Gashimzade, F. M.
    Guseinova, D. A.
    Jahangirli, Z. A.
    Nizametdinova, M. A.
    [J]. PHYSICS OF THE SOLID STATE, 2013, 55 (09) : 1802 - 1807
  • [7] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191
  • [8] Strongly bound Mott-Wannier excitons in GeS and GeSe monolayers
    Gomes, Lidia C.
    Trevisanutto, P. E.
    Carvalho, A.
    Rodin, A. S.
    Castro Neto, A. H.
    [J]. PHYSICAL REVIEW B, 2016, 94 (15)
  • [9] Layer thickness-dependent phonon properties and thermal conductivity of MoS2
    Gu, Xiaokun
    Li, Baowen
    Yang, Ronggui
    [J]. JOURNAL OF APPLIED PHYSICS, 2016, 119 (08)
  • [10] Polarized Band-Edge Emission and Dichroic Optical Behavior in Thin Multilayer GeS
    Ho, Ching-Hwa
    Li, Jia-Xuan
    [J]. ADVANCED OPTICAL MATERIALS, 2017, 5 (03):