Inverse design of triblock Janus spheres for self-assembly of complex structures in the crystallization slot via digital alchemy

被引:9
作者
Rivera-Rivera, Luis Y. [1 ]
Moore, Timothy C. [1 ]
Glotzer, Sharon C. [1 ,2 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48104 USA
[2] Univ Michigan, Biointerfaces Inst, Ann Arbor, MI 48104 USA
基金
美国国家科学基金会;
关键词
2ND VIRIAL-COEFFICIENT; PATCHY PARTICLES; PROTEIN CRYSTALLIZATION; ENTROPY; POTENTIALS; COLLOIDS; BEHAVIOR; CRYSTAL;
D O I
10.1039/d2sm01593e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The digital alchemy framework is an extended ensemble simulation technique that incorporates particle attributes as thermodynamic variables, enabling the inverse design of colloidal particles for desired behavior. Here, we extend the digital alchemy framework for the inverse design of patchy spheres that self-assemble into target crystal structures. To constrain the potentials to non-trivial solutions, we conduct digital alchemy simulations with constant second virial coefficient. We optimize the size, range, and strength of patchy interactions in model triblock Janus spheres to self-assemble the 2D kagome and snub square lattices and the 3D pyrochlore lattice, and demonstrate self-assembly of all three target structures with the designed models. The particles designed for the kagome and snub square lattices assemble into high quality clusters of their target structures, while competition from similar polymorphs lower the yield of the pyrochlore assemblies. We find that the alchemically designed potentials do not always match physical intuition, illustrating the ability of the method to find nontrivial solutions to the optimization problem. We identify a window of second virial coefficients that result in self-assembly of the target structures, analogous to the crystallization slot in protein crystallization.
引用
收藏
页码:2726 / 2736
页数:11
相关论文
共 88 条
[1]   Inverse design of simple pair potentials for the self-assembly of complex structures [J].
Adorf, Carl S. ;
Antonaglia, James ;
Dshemuchadse, Julia ;
Glotzer, Sharon C. .
JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (20)
[2]   Janus Nanoparticles: Recent Advances in Their Interfacial and Biomedical Applications [J].
Agrawal, Garima ;
Agrawal, Rahul .
ACS APPLIED NANO MATERIALS, 2019, 2 (04) :1738-1757
[3]   Phase behavior of an intact monoclonal antibody [J].
Ahamed, Tangir ;
Esteban, Beatriz N. A. ;
Ottens, Marcel ;
van Dedem, Gijs W. K. ;
van der Wielen, Luuk A. M. ;
Bisschops, Marc A. T. ;
Lee, Albert ;
Pham, Christine ;
Thommes, Jorg .
BIOPHYSICAL JOURNAL, 2007, 93 (02) :610-619
[4]   HOOMD-blue: A Python']Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations [J].
Anderson, Joshua A. ;
Glaser, Jens ;
Glotzer, Sharon C. .
COMPUTATIONAL MATERIALS SCIENCE, 2020, 173
[5]   Scalable Metropolis Monte Carlo for simulation of hard shapes [J].
Anderson, Joshua A. ;
Irrgang, M. Eric ;
Glotzer, Sharon C. .
COMPUTER PHYSICS COMMUNICATIONS, 2016, 204 :21-30
[6]   On the stability of Archimedean tilings formed by patchy particles [J].
Antlanger, Moritz ;
Doppelbauer, Guenther ;
Kahl, Gerhard .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (40)
[7]   Assembly of particle strings via isotropic potentials [J].
Banerjee, D. ;
Lindquist, B. A. ;
Jadrich, R. B. ;
Truskett, T. M. .
JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (12)
[8]  
Ben-Naim A., 1992, STAT THERMODYNAMICS
[9]   Crystallization conditions of membrane protein CLC-ec1: An example outside the crystallization slot [J].
Blouwolff, J. ;
Fraden, S. .
JOURNAL OF CRYSTAL GROWTH, 2007, 303 (02) :546-553
[10]   Interest of the normalized second virial coefficient and interaction potentials for crystallizing large macromolecules [J].
Bonneté, F ;
Vivarès, D .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 :1571-1575