eMIC-AntiKP: Estimating minimum inhibitory concentrations of antibiotics towards Klebsiella pneumoniae using deep learning

被引:3
作者
Nguyen, Quang H. [1 ]
Ngo, Hoang H. [1 ]
Nguyen-Vo, Thanh-Hoang [2 ]
Do, Trang T. T. [3 ]
Rahardja, Susanto [4 ,5 ]
Nguyen, Binh P. [2 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Informat & Commun Technol, Hanoi 100000, Vietnam
[2] Victoria Univ Wellington, Sch Math & Stat, Wellington 6140, New Zealand
[3] Wellington Inst Technol, Sch Innovat Design & Technol, Lower Hutt 5012, New Zealand
[4] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710072, Peoples R China
[5] Singapore Inst Technol, Infocomm Technol Cluster, Singapore 138683, Singapore
关键词
Minimum inhibitory concentration; Antimicrobial resistance; Antibiotic; Klebsiella pneumoniae; Convolutional neural networks; ESCHERICHIA-COLI; NEURAL-NETWORK; RESISTANCE; SUSCEPTIBILITY; PREDICTION;
D O I
10.1016/j.csbj.2022.12.041
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nowadays, antibiotic resistance has become one of the most concerning problems that directly affects the recovery process of patients. For years, numerous efforts have been made to efficiently use antimicrobial drugs with appropriate doses not only to exterminate microbes but also stringently constrain any chances for bacterial evolution. However, choosing proper antibiotics is not a straightforward and time-effective process because well-defined drugs can only be given to patients after determining microbic taxonomy and evaluating minimum inhibitory concentrations (MICs). Besides conventional methods, numerous computeraided frameworks have been recently developed using computational advances and public data sources of clinical antimicrobial resistance. In this study, we introduce eMIC-AntiKP, a computational framework specifically designed to predict the MIC values of 20 antibiotics towards Klebsiella pneumoniae. Our prediction models were constructed using convolutional neural networks and k-mer counting-based features. The model for cefepime has the most limited performance with a test 1-tier accuracy of 0.49, while the model for ampicillin has the highest performance with a test 1-tier accuracy of 1.00. Most models have satisfactory performance, with test accuracies ranging from about 0.70-0.90. The significance of eMICAntiKP is the effective utilization of computing resources to make it a compact and portable tool for most moderately configured computers. We provide users with two options, including an online web server for basic analysis and an offline package for deeper analysis and technical modification.(c) 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:751 / 757
页数:7
相关论文
共 45 条
[1]   Persistence of antibiotic resistant bacteria [J].
Andersson, DI .
CURRENT OPINION IN MICROBIOLOGY, 2003, 6 (05) :452-456
[2]   PATRIC as a unique resource for studying antimicrobial resistance [J].
Antonopoulos, Dionysios A. ;
Assaf, Rida ;
Aziz, Ramy Karam ;
Brettin, Thomas ;
Bun, Christopher ;
Conrad, Neal ;
Davis, James J. ;
Dietrich, Emily M. ;
Disz, Terry ;
Gerdes, Svetlana ;
Kenyon, Ronald W. ;
Machi, Dustin ;
Mao, Chunhong ;
Murphy-Olson, Daniel E. ;
Nordberg, Eric K. ;
Olsen, Gary J. ;
Olson, Robert ;
Overbeek, Ross ;
Parrello, Bruce ;
Pusch, Gordon D. ;
Santerre, John ;
Shukla, Maulik ;
Stevens, Rick L. ;
VanOeffelen, Margo ;
Vonstein, Veronika ;
Warren, Andrew S. ;
Wattam, Alice R. ;
Xia, Fangfang ;
Yoo, Hyunseung .
BRIEFINGS IN BIOINFORMATICS, 2019, 20 (04) :1094-1102
[3]   AMR-Diag: Neural network based genotype-to-phenotype prediction of resistance towards β-lactams in Escherichia coli and Klebsiella pneumoniae [J].
Avershina, Ekaterina ;
Sharma, Priyanka ;
Taxt, Arne M. ;
Singh, Harpreet ;
Frye, Stephan A. ;
Paul, Kolin ;
Kapil, Arti ;
Naseer, Umaer ;
Kaur, Punit ;
Ahmad, Rafi .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 (19) :1896-1906
[4]   Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis [J].
Bradley, Phelim ;
Gordon, N. Claire ;
Walker, Timothy M. ;
Dunn, Laura ;
Heys, Simon ;
Huang, Bill ;
Earle, Sarah ;
Pankhurst, Louise J. ;
Anson, Luke ;
de Cesare, Mariateresa ;
Piazza, Paolo ;
Votintseva, Antonina A. ;
Golubchik, Tanya ;
Wilson, Daniel J. ;
Wyllie, David H. ;
Diel, Roland ;
Niemann, Stefan ;
Feuerriegel, Silke ;
Kohl, Thomas A. ;
Ismail, Nazir ;
Omar, Shaheed V. ;
Smith, E. Grace ;
Buck, David ;
McVean, Gil ;
Walker, A. Sarah ;
Peto, Tim E. A. ;
Crook, Derrick W. ;
Iqbal, Zamin .
NATURE COMMUNICATIONS, 2015, 6
[5]   Can susceptibility to an antimicrobial be restored by halting its use? The case of streptomycin versus Enterobacteriaceae [J].
Chiew, YF ;
Yeo, SF ;
Hall, LMC ;
Livermore, DM .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 1998, 41 (02) :247-251
[6]   The Use of Machine Learning Methodologies to Analyse Antibiotic and Biocide Susceptibility in Staphylococcus aureus [J].
Coelho, Joana Rosado ;
Carrico, Joao Andre ;
Knight, Daniel ;
Martinez, Jose-Luis ;
Morrissey, Ian ;
Oggioni, Marco Rinaldo ;
Freitas, Ana Teresa .
PLOS ONE, 2013, 8 (02)
[7]   Antimicrobial drug resistance: "Prediction is very difficult, especially about the future" [J].
Courvalin, P .
EMERGING INFECTIOUS DISEASES, 2005, 11 (10) :1503-1506
[8]   Minimizing potential resistance: The molecular view [J].
Courvalin, P ;
Trieu-Cuot, P .
CLINICAL INFECTIOUS DISEASES, 2001, 33 :S138-S146
[9]   Origins and Evolution of Antibiotic Resistance [J].
Davies, Julian ;
Davies, Dorothy .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2010, 74 (03) :417-+
[10]   Antimicrobial Resistance Prediction in PATRIC and RAST [J].
Davis, James J. ;
Boisvert, Sebastien ;
Brettin, Thomas ;
Kenyon, Ronald W. ;
Mao, Chunhong ;
Olson, Robert ;
Overbeek, Ross ;
Santerre, John ;
Shukla, Maulik ;
Wattam, Alice R. ;
Will, Rebecca ;
Xia, Fangfang ;
Stevens, Rick .
SCIENTIFIC REPORTS, 2016, 6