Existence Results for Generalized Vector Quasi-Equilibrium Problems in Hadamard Manifolds

被引:0
作者
Huang, Shuechin [1 ]
机构
[1] Natl Dong Hwa Univ, Dept Appl Math, Hualien 97401, Taiwan
关键词
generalized vector quasi-equilibrium problem; fixed point; locally compact; sigma-compact; Hadamard manifold; cone-convexity; minimax problem; THEOREMS;
D O I
10.3390/axioms12010040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this article was to establish manifold versions of existence theorems for generalized vector quasi-equilibrium problems in locally compact and sigma-compact spaces without any continuity assumption. The fixed-point theorem in a product Hadamard manifold is the key focus of our discussion. We further applied our theorems to saddle point and minimax problems.
引用
收藏
页数:13
相关论文
共 22 条
[1]  
Aliprantis C.D., 1999, INFINITE DIMENSIONAL, V2, DOI [10.1007/978-3-662-03961-8, DOI 10.1007/978-3-662-03961-8]
[2]   Vectorial form of Ekeland-type variational principle with applications to vector equilibrium problems and fixed point theory [J].
Ansari, Qamrul Hasan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (01) :561-575
[3]   Proximal point algorithm for inclusion problems in Hadamard manifolds with applications [J].
Ansari, Qamrul Hasan ;
Babu, Feeroz .
OPTIMIZATION LETTERS, 2021, 15 (03) :901-921
[4]  
Aussel D, 2017, J CONVEX ANAL, V24, P55
[5]   Scalar and vector equilibrium problems with pairs of bifunctions [J].
Balaj, Mircea .
JOURNAL OF GLOBAL OPTIMIZATION, 2022, 84 (03) :739-753
[6]  
Blum E., 1994, Math. Student, V63, P123
[7]   An Augmented Lagrangian method for quasi-equilibrium problems [J].
Bueno, L. F. ;
Haeser, G. ;
Lara, F. ;
Rojas, F. N. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 76 (03) :737-766
[8]   Equilibrium Problems: Existence Results and Applications [J].
Cotrina, John ;
Garcia, Yboon .
SET-VALUED AND VARIATIONAL ANALYSIS, 2018, 26 (01) :159-177
[9]  
do Carmo M., 1992, Riemannian Geometry
[10]  
Huang S, 2021, J NONLINEAR CONVEX A, V22, P1189