Validity of ICD-10-based algorithms to identify patients with influenza in inpatient and outpatient settings

被引:3
作者
Benack, Kirk [1 ,2 ]
Nyandege, Abner [3 ]
Nonnenmacher, Edward [3 ,4 ]
Jan, Saira [5 ]
Setoguchi, Soko [3 ,6 ,7 ]
Gerhard, Tobias [3 ,7 ,8 ]
Strom, Brian L. [3 ,9 ]
Horton, Daniel B. [3 ,7 ,10 ,11 ]
机构
[1] Montefiore Med Ctr, Dept Anesthesiol, Bronx, New York, NY USA
[2] Rutgers Robert Wood Johnson Med Sch, Piscataway, NJ USA
[3] Inst Hlth, Ctr Pharmacoepidemiol & Treatment Sci, Hlth Care Policy & Aging Res, New Brunswick, NJ USA
[4] Bayshore Analyt & Integrated Solut LLC, Belford, NJ USA
[5] Horizon Blue Cross Blue Shield New Jersey, Newark, NJ USA
[6] Rutgers Robert Wood Johnson Med Sch, Dept Med, New Brunswick, NJ USA
[7] Rutgers Sch Publ Hlth, Dept Biostat & Epidemiol, Piscataway, NJ USA
[8] Ernest Mario Sch Pharm, Dept Pharm Practice, Adm, Piscataway, NJ USA
[9] Rutgers Biomed & Hlth Sci, Newark, NJ USA
[10] Rutgers Robert Wood Johnson Med Sch, Dept Pediat, New Brunswick, NJ USA
[11] 112 Paterson St, New Brunswick, NJ 08901 USA
关键词
algorithm; diagnosis; ICD-10-CM; influenza; validation;
D O I
10.1002/pds.5788
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
PurposeTo evaluate the validity of ICD-10-CM code-based algorithms as proxies for influenza in inpatient and outpatient settings in the USA. MethodsAdministrative claims data (2015-2018) from the largest commercial insurer in New Jersey (NJ), USA, were probabilistically linked to outpatient and inpatient electronic health record (EHR) data containing influenza test results from a large NJ health system. The primary claims-based algorithms defined influenza as presence of an ICD-10-CM code for influenza, stratified by setting (inpatient/outpatient) and code position for inpatient encounters. Test characteristics and 95% confidence intervals (CIs) were calculated using test-positive influenza as a reference standard. Test characteristics of alternative outpatient algorithms incorporating CPT/HCPCS testing codes and anti-influenza medication pharmacy claims were also calculated. ResultsThere were 430 documented influenza test results within the study period (295 inpatient, 135 outpatient). The claims-based influenza definition had a sensitivity of 84.9% (95% CI 72.9%-92.1%), specificity of 96.3% (95% CI 93.1%-98.0%), and PPV of 83.3% (95% CI 71.3%-91.0%) in the inpatient setting, and a sensitivity of 76.7% (95% CI 59.1%-88.2%), specificity of 96.2% (95% CI 90.6%-98.5%), PPV of 85.2% (95% CI 67.5%-94.1%) in the outpatient setting. Primary inpatient discharge diagnoses had a sensitivity of 54.7% (95% CI 41.5%-67.3%), specificity of 99.6% (95% CI 97.7%-99.9%), and PPV of 96.7% (95% CI 83.3%-99.4%). CPT/HCPCS codes and anti-influenza medication claims were present for few outpatient encounters (sensitivity 3%-10%). ConclusionsIn a large US healthcare system, inpatient ICD-10-CM codes for influenza, particularly primary inpatient diagnoses, had high predictive value for test-positive influenza. Outpatient ICD-10-CM codes were moderately predictive of test-positive influenza.
引用
收藏
页数:6
相关论文
共 15 条
[1]  
Center for Drug Evaluation and Research (CDER), Infectious Disease Diagnoses
[2]  
Centers for Disease Control and Prevention, 2021, FLUVIEW INTERACTIVE
[3]   Use of Administrative Data for the Identificationof Laboratory-Confirmed Influenza Infection: The Validity ofInfluenza-Specific ICD-9 Codes [J].
Feemster, Kristen A. ;
Leckerman, Kateri H. ;
Middleton, Maria ;
Zerr, Danielle M. ;
Elward, Alexis M. ;
Newland, Jason G. ;
Asti, Lindsey ;
Guth, Rebecca M. ;
Selvarangan, Rangaraj ;
Coffin, Susan E. .
JOURNAL OF THE PEDIATRIC INFECTIOUS DISEASES SOCIETY, 2013, 2 (01) :63-66
[4]   Validating International Classification of Disease 10th Revision algorithms for identifying influenza and respiratory syncytial virus hospitalizations [J].
Hamilton, Mackenzie A. ;
Calzavara, Andrew ;
Emerson, Scott D. ;
Djebli, Mohamed ;
Sundaram, Maria E. ;
Chan, Adrienne K. ;
Kustra, Rafal ;
Baral, Stefan D. ;
Mishra, Sharmistha ;
Kwong, Jeffrey C. .
PLOS ONE, 2021, 16 (01)
[5]   Assessment of the Accuracy of Using ICD-9 Diagnosis Codes to Identify Pneumonia Etiology in Patients Hospitalized With Pneumonia [J].
Higgins, Thomas L. ;
Deshpande, Abhishek ;
Zilberberg, Marya D. ;
Lindenauer, Peter K. ;
Imrey, Peter B. ;
Yu, Pei-Chun ;
Haessler, Sarah D. ;
Richter, Sandra S. ;
Rothberg, Michael B. .
JAMA NETWORK OPEN, 2020, 3 (07)
[6]   Statin Use and Risks of Influenza-Related Outcomes Among Older Adults Receiving Standard-Dose or High-Dose Influenza Vaccines Through Medicare During 2010-2015 [J].
Izurieta, Hector S. ;
Chillarige, Yoganand ;
Kelman, Jeffrey A. ;
Forshee, Richard ;
Qiang, Yandong ;
Wernecke, Michael ;
Ferdinands, Jill M. ;
Lu, Yun ;
Wei, Yuqin ;
Xu, Wenjie ;
Lu, Michael ;
Fry, Alicia ;
Pratt, Douglas ;
Shay, David K. .
CLINICAL INFECTIOUS DISEASES, 2018, 67 (03) :378-387
[7]   Comparative effectiveness of high-dose versus standard-dose influenza vaccines in US residents aged 65 years and older from 2012 to 2013 using Medicare data: a retrospective cohort analysis [J].
Izurieta, Hector S. ;
Thadani, Nicole ;
Shay, David K. ;
Lu, Yun ;
Maurer, Aaron ;
Foppa, Ivo M. ;
Franks, Riley ;
Pratt, Douglas ;
Forshee, Richard A. ;
MaCurdy, Thomas ;
Worrall, Chris ;
Howery, Andrew E. ;
Kelman, Jeffrey .
LANCET INFECTIOUS DISEASES, 2015, 15 (03) :293-300
[8]  
Jackson ML, 2017, NEW ENGL J MED, V377, P534, DOI [10.1056/NEJMoa1700153, 10.1056/nejmoa1700153]
[9]   Comparing record linkage software programs and algorithms using real-world data [J].
Karr, Alan F. ;
Taylor, Matthew T. ;
West, Suzanne L. ;
Setoguchi, Soko ;
Kou, Tzuyung D. ;
Gerhard, Tobias ;
Horton, Daniel B. .
PLOS ONE, 2019, 14 (09)
[10]   Biomarker underuse contributes to an inability to phenotype patients with severe uncontrolled asthma [J].
Khan, Najm S. ;
Rubin, Elizabeth ;
McKenna, Bernard ;
Palowitch, Bernard L. ;
Sonnenberg, Frank ;
Argon, Judith ;
Panettieri Jr, Reynold A. .
ALLERGY AND ASTHMA PROCEEDINGS, 2022, 43 (05) :383-387