Differentiating Alzheimer's disease from mild cognitive impairment: a quick screening tool based on machine learning

被引:3
作者
Lu, Wenqi [1 ,2 ]
Zhang, Meiwei [3 ]
Yu, Weihua [4 ]
Kuang, Weihong [2 ]
Chen, Lihua [4 ]
Zhang, Wenbo [1 ]
Yu, Juan [3 ]
Lu, Yang [1 ]
机构
[1] Chongqing Med Univ, Affiliated Hosp 1, Dept Geriatr, Chongqing, Peoples R China
[2] Sichuan Univ, West China Hosp, Dept Psychiat, Chengdu, Peoples R China
[3] Chongqing Univ, Coll Elect Engn, Chongqing, Peoples R China
[4] Chongqing Med Univ, Inst Neurosci, Chongqing, Peoples R China
关键词
dementia; delirium & cognitive disorders; psychiatry; neurology; aging; ASSOCIATION WORKGROUPS; DIAGNOSTIC GUIDELINES; SOCIAL RELATIONSHIPS; NATIONAL INSTITUTE; DEMENTIA; RECOMMENDATIONS; DEPRESSION; PREVALENCE; REGRESSION; SYMPTOMS;
D O I
10.1136/bmjopen-2023-073011
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Alzheimer's disease (AD) is a neurodegenerative disorder characterised by cognitive decline, behavioural and psychological symptoms of dementia (BPSD) and impairment of activities of daily living (ADL). Early differentiation of AD from mild cognitive impairment (MCI) is necessary. Methods A total of 458 patients newly diagnosed with AD and MCI were included. Eleven batteries were used to evaluate ADL, BPSD and cognitive function (ABC). Machine learning approaches including XGboost, classification and regression tree, Bayes, support vector machines and logical regression were used to build and verify the new tool. Results The Alzheimer's Disease Assessment Scale (ADAS-cog) word recognition task showed the best importance in judging AD and MCI, followed by correct numbers of auditory verbal learning test delay recall and ADAS-cog orientation. We also provided a selected ABC-Scale that covered ADL, BPSD and cognitive function with an estimated completion time of 18 min. The sensitivity was improved in the four models. Conclusion The quick screen ABC-Scale covers three dimensions of ADL, BPSD and cognitive function with good efficiency in differentiating AD from MCI.
引用
收藏
页数:10
相关论文
共 46 条
[1]   The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J].
Albert, Marilyn S. ;
DeKosky, Steven T. ;
Dickson, Dennis ;
Dubois, Bruno ;
Feldman, Howard H. ;
Fox, Nick C. ;
Gamst, Anthony ;
Holtzman, David M. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Snyder, Peter J. ;
Carrillo, Maria C. ;
Thies, Bill ;
Phelps, Creighton H. .
ALZHEIMERS & DEMENTIA, 2011, 7 (03) :270-279
[2]   Automatized FACEmemory® scoring is related to Alzheimer's disease phenotype and biomarkers in early-onset mild cognitive impairment: the BIOFACE cohort [J].
Alegret, Montserrat ;
Sotolongo-Grau, Oscar ;
de Antonio, Ester Esteban ;
Perez-Cordon, Alba ;
Orellana, Adelina ;
Espinosa, Ana ;
Gil, Silvia ;
Jimenez, Daniel ;
Ortega, Gemma ;
Sanabria, Angela ;
Roberto, Natalia ;
Hernandez, Isabel ;
Rosende-Roca, Maitee ;
Tartari, Juan Pablo ;
Alarcon-Martin, Emilio ;
de Rojas, Itziar ;
Montrreal, Laura ;
Morato, Xavier ;
Cano, Amanda ;
Rentz, Dorene M. ;
Tarraga, Lluis ;
Ruiz, Agustin ;
Valero, Sergi ;
Marquie, Marta ;
Boada, Merce .
ALZHEIMERS RESEARCH & THERAPY, 2022, 14 (01)
[3]   A computerized version of the Short Form of the Face-Name Associative Memory Exam (FACEmemory®) for the early detection of Alzheimer's disease [J].
Alegret, Montserrat ;
Munoz, Nathalia ;
Roberto, Natalia ;
Rentz, Dorene M. ;
Valero, Sergi ;
Gil, Silvia ;
Marquie, Marta ;
Hernandez, Isabel ;
Riveros, Catalina ;
Sanabria, Angela ;
Perez-Cordon, Alba ;
Espinosa, Ana ;
Ortega, Gemma ;
Mauleon, Ana ;
Abdelnour, Carla ;
Rosende-Roca, Maitee ;
Papp, Kathryn V. ;
Orellana, Adela ;
Benaque, Alba ;
Tarraga, Lluis ;
Ruiz, Agustin ;
Boada, Merce .
ALZHEIMERS RESEARCH & THERAPY, 2020, 12 (01)
[4]   Vascular disease, depression, and dementia [J].
Alexopoulos, GS .
JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2003, 51 (08) :1178-1180
[5]   Predicting Cognitive Impairment and Dementia: A Machine Learning Approach [J].
Aschwanden, Damaris ;
Aichele, Stephen ;
Ghisletta, Paolo ;
Terracciano, Antonio ;
Kliegel, Matthias ;
Sutin, Angelina R. ;
Brown, Justin ;
Allemand, Mathias .
JOURNAL OF ALZHEIMERS DISEASE, 2020, 75 (03) :717-728
[6]   Living well with dementia-development of the national dementia strategy for England [J].
Banerjee, Sube .
INTERNATIONAL JOURNAL OF GERIATRIC PSYCHIATRY, 2010, 25 (09) :917-922
[7]   Management of Behavioral and Psychological Symptoms of Dementia [J].
Bessey, Laurel J. ;
Walaszek, Art .
CURRENT PSYCHIATRY REPORTS, 2019, 21 (08)
[8]   Neuropsychological contributions to the early identification of Alzheimer's disease [J].
Bondi, Mark W. ;
Jak, Amy J. ;
Delano-Wood, Lisa ;
Jacobson, Mark W. ;
Delis, Dean C. ;
Salmon, David P. .
NEUROPSYCHOLOGY REVIEW, 2008, 18 (01) :73-90
[9]   Cognitive tests for the detection of mild cognitive impairment (MCI), the prodromal stage of dementia: Meta-analysis of diagnostic accuracy studies [J].
Breton, Alexandre ;
Casey, Daniel ;
Arnaoutoglou, Nikitas A. .
INTERNATIONAL JOURNAL OF GERIATRIC PSYCHIATRY, 2019, 34 (02) :233-242
[10]   Using high-dimensional machine learning methods to estimate an anatomical risk factor for Alzheimer's disease across imaging databases [J].
Casanova, Ramon ;
Barnard, Ryan T. ;
Gaussoin, Sarah A. ;
Saldana, Santiago ;
Hayden, Kathleen M. ;
Manson, JoAnn E. ;
Wallace, Robert B. ;
Rapp, Stephen R. ;
Resnick, Susan M. ;
Espeland, Mark A. ;
Chen, Jiu-Chiuan .
NEUROIMAGE, 2018, 183 :401-411