Probing localization properties of many-body Hamiltonians via an imaginary vector potential

被引:0
作者
O'Brien, Liam [1 ]
Refael, Gil [1 ]
机构
[1] CALTECH, Dept Phys, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
EXCEPTIONAL POINTS; QUANTUM; DELOCALIZATION; THERMALIZATION;
D O I
10.1103/PhysRevB.108.184207
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Identifying and measuring the "localization length" in many-body systems in the vicinity of a many-body localization transition is difficult. Following Hatano and Nelson, a recent paper [S. Heussen, C. D. White, and G. Refael, Phys. Rev. B 103, 064201 (2021)] introduced an "imaginary vector potential" to a disordered ring of interacting fermions, in order to define a many-body localization length (corresponding, in the noninteracting case, to the end-to-end Green's function of the Hermitian system). We extend these results, by connecting this localization length to the length scale appearing in the avalanche model of delocalization. We use this connection to derive the distribution of the localization length at the MBL transition, finding good agreement with our numerical observations. Our results demonstrate how a localization length defined as such probes the localization of the underlying ring, without the need to explicitly construct the l-bits.
引用
收藏
页数:21
相关论文
共 89 条
  • [1] Distinguishing localization from chaos: Challenges in finite-size systems
    Abanin, D. A.
    Bardarson, J. H.
    De Tomasi, G.
    Gopalakrishnan, S.
    Khemani, V
    Parameswaran, S. A.
    Pollmann, F.
    Potter, A. C.
    Serbyn, M.
    Vasseur, R.
    [J]. ANNALS OF PHYSICS, 2021, 427
  • [2] Anderson localization makes adiabatic quantum optimization fail
    Altshuler, Boris
    Krovi, Hari
    Roland, Jeremie
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (28) : 12446 - 12450
  • [3] ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES
    ANDERSON, PW
    [J]. PHYSICAL REVIEW, 1958, 109 (05): : 1492 - 1505
  • [4] Localization and topology protected quantum coherence at the edge of hot matter
    Bahri, Yasaman
    Vosk, Ronen
    Altman, Ehud
    Vishwanath, Ashvin
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [5] Area laws in a many-body localized state and its implications for topological order
    Bauer, Bela
    Nayak, Chetan
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [6] Non-hermitean delocalization: Multiple scattering and bounds
    Brezin, E
    Zee, A
    [J]. NUCLEAR PHYSICS B, 1998, 509 (03) : 599 - 614
  • [7] Multimodel inference - understanding AIC and BIC in model selection
    Burnham, KP
    Anderson, DR
    [J]. SOCIOLOGICAL METHODS & RESEARCH, 2004, 33 (02) : 261 - 304
  • [8] Potter AC, 2015, Arxiv, DOI arXiv:1506.00592
  • [9] Constructing local integrals of motion in the many-body localized phase
    Chandran, Anushya
    Kim, Isaac H.
    Vidal, Guifre
    Abanin, Dmitry A.
    [J]. PHYSICAL REVIEW B, 2015, 91 (08)
  • [10] Many-body localization and symmetry-protected topological order
    Chandran, Anushya
    Khemani, Vedika
    Laumann, C. R.
    Sondhi, S. L.
    [J]. PHYSICAL REVIEW B, 2014, 89 (14):