Liouville theory and the Weil-Petersson geometry of moduli space

被引:3
作者
Harrison, Sarah M. [1 ,2 ]
Maloney, Alexander [1 ]
Numasawa, Tokiro [3 ]
机构
[1] McGill Univ, Dept Phys, Montreal, PQ, Canada
[2] McGill Univ, Dept Math & Stat, Montreal, PQ, Canada
[3] Univ Tokyo, Inst Solid State Phys, Kashiwa 2778581, Japan
基金
加拿大自然科学与工程研究理事会;
关键词
Conformal and W Symmetry; Field Theories in Lower Dimensions; Random Systems; CONFORMAL SYMMETRY; QUANTUM GEOMETRY; FIELD-THEORY; GRAVITY;
D O I
10.1007/JHEP11(2023)227
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Liouville theory describes the dynamics of surfaces with constant negative curvature and can be used to study the Weil-Petersson geometry of the moduli space of Riemann surfaces. This leads to an efficient algorithm to compute the Weil-Petersson metric to arbitrary accuracy using Zamolodchikov's recursion relation for conformal blocks. For example, we compute the metric on M-0,M-4 numerically to high accuracy by considering Liouville theory on a sphere with four punctures. We numerically compute the eigenvalues of the Weil-Petersson Laplacian, and find evidence that the obey the statistics of a random matrix in the Gaussian Orthogonal Ensemble.
引用
收藏
页数:35
相关论文
共 46 条
[1]   Calabi-Yau CFTs and random matrices [J].
Afkhami-Jeddi, Nima ;
Ashmore, Anthony ;
Cordova, Clay .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (02)
[2]   Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles [J].
Atas, Y. Y. ;
Bogomolny, E. ;
Giraud, O. ;
Roux, G. .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[3]   Echoes of chaos from string theory black holes [J].
Balasubramanian, Vijay ;
Craps, Ben ;
Czech, Bartlomiej ;
Sarosi, Gabor .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (03)
[4]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[5]   Semi-classical Virasoro blocks: proof of exponentiation [J].
Besken, Mert ;
Datta, Shouvik ;
Kraus, Per .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (01)
[6]   SPECTRAL PROPERTIES OF THE LAPLACIAN AND RANDOM MATRIX THEORIES [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
JOURNAL DE PHYSIQUE LETTRES, 1984, 45 (21) :1015-1022
[7]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4
[8]  
Cotler JS, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2018)002
[9]   Black holes and random matrices [J].
Cotler, Jordan S. ;
Gur-Ari, Guy ;
Hanada, Masanori ;
Polchinski, Joseph ;
Saad, Phil ;
Shenker, Stephen H. ;
Stanford, Douglas ;
Streicher, Alexandre ;
Tezuka, Masaki .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (05)
[10]   2-POINT AND 3-POINT FUNCTIONS IN LIOUVILLE THEORY [J].
DORN, H ;
OTTO, HJ .
NUCLEAR PHYSICS B, 1994, 429 (02) :375-388