Stable Triple-Wavelength Random Fiber Laser Based on Fiber Bragg Gratings

被引:0
作者
Awang Lah, Airull Azizi [1 ]
Sulaiman, Abdul Hadi [2 ]
Abdullah, Fairuz [2 ]
Ambran, Sumiaty [1 ]
Ng, Eng Khoon [3 ]
Alresheedi, Mohammed Thamer [4 ]
Mahdi, Mohd Adzir [5 ]
Md Yusoff, Nelidya [6 ]
机构
[1] Univ Technol Malaysia, Malaysia Japan Int Inst Technol, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
[2] Univ Tenaga Nas, Inst Power Engn, Jalan IKRAM UNITEN, Kajang 43000, Selangor, Malaysia
[3] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
[4] King Saud Univ, Coll Engn, Dept Elect Engn, POB 800, Riyadh 11421, Saudi Arabia
[5] Univ Putra Malaysia, Fac Engn, Wireless & Photon Networks Res Ctr, Serdang 43400, Selangor, Malaysia
[6] Univ Technol Malaysia, Razak Fac Technol & Informat, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
关键词
random fiber laser; semiconductor optical amplifier; erbium-doped fiber amplifier; fiber Bragg grating; intensity-dependent loss; OPERATION; FILTER;
D O I
10.3390/photonics10080924
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate a generation of three lasing wavelengths with the assistance of Rayleigh backscattering as the stabilizer of peak power variations. The proposed laser consists of a combination of the semiconductor optical amplifier (SOA) and erbium-doped fiber amplifier (EDFA) as the amplifying media. Three fiber Bragg gratings are employed as the selective wavelength selectors at 1544, 1547 and 1550 nm. At 110 mA SOA current and 18 dBm EDFA output power, a flattened output spectrum with 0.9 dB peak power variation is attained. In terms of stability, the maximum peak power fluctuation for the individual laser is 0.24 dB within 120 minutes observation period. Without the Rayleigh backscattering effect, the peak power flatness is severely degraded. This shows that the weakly distributed photons can be utilized as peak power stabilizers in fiber laser systems.
引用
收藏
页数:10
相关论文
共 46 条
[1]   Distributed feedback multimode Brillouin-Raman random fiber laser in the S-band [J].
Ahmad, H. ;
Zulkifli, M. Z. ;
Jemangin, M. H. ;
Harun, S. W. .
LASER PHYSICS LETTERS, 2013, 10 (05)
[2]  
Ali S., 2008, P 2008 INT C COMP CO
[3]   Advances in Random Fiber Lasers and Their Sensing Application [J].
Chen, Hong ;
Gao, Shaohua ;
Zhang, Mingjiang ;
Zhang, Jianzhong ;
Qiao, Lijun ;
Wang, Tao ;
Gao, Fei ;
Hu, Xinxin ;
Li, Shichuan ;
Zhu, Yicheng .
SENSORS, 2020, 20 (21) :1-20
[4]   Random distributed feedback fiber laser pumped by an ytterbium doped fiber laser [J].
Chen, Lulu ;
Ding, Yingchun .
OPTIK, 2014, 125 (14) :3663-3665
[5]   Recent advances in fundamentals and applications of random fiber lasers [J].
Churkin, Dmitry V. ;
Sugavanam, Srikanth ;
Vatnik, Ilya D. ;
Wang, Zinan ;
Podivilov, Evgenii V. ;
Babin, Sergey A. ;
Rao, Yunjiang ;
Turitsyn, Sergei K. .
ADVANCES IN OPTICS AND PHOTONICS, 2015, 7 (03) :516-569
[6]   Optical coherence tomography as a method of quality inspection for printed electronics products [J].
Czajkowski, Jakub ;
Prykari, Tuukka ;
Alarousu, Erkki ;
Palosaari, Jaakko ;
Myllyla, Risto .
OPTICAL REVIEW, 2010, 17 (03) :257-262
[7]   High stability multiwavelength random erbium-doped fiber laser with a reflecting-filter of six-superimposed fiber-Bragg-gratings [J].
Feng, Ting ;
Jiang, Meili ;
Ren, Yating ;
Wang, Mingming ;
Yan, Fengping ;
Suo, Yuping ;
Yao, X. Steve .
OSA CONTINUUM, 2019, 2 (09) :2526-2538
[8]   Mechanism for stable, ultra-flat multiwavelength operation in erbium-doped fiber lasers employing intensity-dependent loss [J].
Feng, Xinhuan ;
Lu, C. ;
Tam, H. Y. ;
Wai, P. K. A. ;
Tang, D. Y. ;
Guan, Bai-ou .
OPTICS AND LASER TECHNOLOGY, 2012, 44 (01) :74-77
[9]   RANDOM LASERS An incoherent fibre laser [J].
Fotiadi, Andrei A. .
NATURE PHOTONICS, 2010, 4 (04) :204-205
[10]   Recent advances and applications of random lasers and random fiber lasers [J].
Gomes, Anderson S. L. ;
Moura, Andre L. ;
Araujo, Cid B. de ;
Raposo, Ernesto P. .
PROGRESS IN QUANTUM ELECTRONICS, 2021, 78