Adaptive multigrid method for quantum eigenvalue problems

被引:1
作者
Xu, Fei [1 ]
Wang, Bingyi [1 ]
Luo, Fusheng [2 ]
机构
[1] Beijing Univ Technol, Beijing Inst Sci & Engn Comp, Fac Sci, Beijing 100124, Peoples R China
[2] Minist Nat Resources, Inst Oceanog 3, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Electronic structure calculations; Nonlinear eigenvalue model; Finite element method; Adaptive multigrid method; Convergence; FINITE-ELEMENT METHODS; A-POSTERIORI; ORBITAL-FREE; TOTAL-ENERGY; CONVERGENCE; DISCRETIZATION; APPROXIMATIONS; ALGORITHMS; COMPLEXITY; SCHEME;
D O I
10.1016/j.cam.2023.115445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new type of adaptive finite element method is proposed for nonlinear eigenvalue problems in electronic structure calculations based on the multilevel correction method and adaptive multigrid method. Different from the classical adaptive finite element method for electronic structure calculations which needs to solve a nonlinear eigenvalue model directly in each adaptive finite element space, our approach only needs to solve a linear elliptic boundary value problem by adaptive multigrid method in each adaptive space, and then correct the eigenpair approximation by solving a smallscale nonlinear eigenvalue model in a low-dimensional correction space. Since solving large-scale nonlinear eigenvalue model is avoided which has exponentially increased computational time, the efficiency of electronic structure calculations can be improved evidently. In addition, the corresponding convergence analysis of the proposed adaptive multigrid algorithm are also derived theoretically and numerically. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 42 条
[1]  
Adams R.A., 1975, SOBOLEV SPACES
[2]   ITERATIVE PROCEDURES FOR NONLINEAR INTEGRAL EQUATIONS [J].
ANDERSON, DG .
JOURNAL OF THE ACM, 1965, 12 (04) :547-&
[3]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[4]   LOCAL MESH REFINEMENT MULTILEVEL TECHNIQUES [J].
BAI, D ;
BRANDT, A .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (02) :109-134
[5]   An h-adaptive finite element solver for the calculations of the electronic structures [J].
Bao, Gang ;
Hu, Guanghui ;
Liu, Di .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (14) :4967-4979
[6]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
[7]  
Brenner SuzanneC., 2008, The mathematical theory of finite element methods, V15, DOI DOI 10.1007/978-0-387-75934-0
[8]   NUMERICAL ANALYSIS OF THE PLANEWAVE DISCRETIZATION OF SOME ORBITAL-FREE AND KOHN-SHAM MODELS [J].
Cances, Eric ;
Chakir, Rachida ;
Maday, Yvon .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (02) :341-388
[9]   Numerical Analysis of Nonlinear Eigenvalue Problems [J].
Cances, Eric ;
Chakir, Rachida ;
Maday, Yvon .
JOURNAL OF SCIENTIFIC COMPUTING, 2010, 45 (1-3) :90-117
[10]   Axioms of adaptivity [J].
Carstensen, C. ;
Feischl, M. ;
Page, M. ;
Praetorius, D. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (06) :1195-1253