A 3.3-Gb/s SPAD-Based Quantum Random Number Generator

被引:19
作者
Keshavarzian, Pouyan [1 ]
Ramu, Karthick [2 ]
Tang, Duy [2 ]
Weill, Carlos [2 ]
Gramuglia, Francesco [3 ]
Tan, Shyue Seng [3 ]
Tng, Michelle [3 ]
Lim, Louis [3 ]
Quek, Elgin [3 ]
Mandich, Denis [2 ]
Stipcevic, Mario [4 ]
Charbon, Edoardo [5 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Adv Quantum Architecture AQUA Lab, CH-2000 Neuchatel, Switzerland
[2] Qrypt Inc, New York, NY 10007 USA
[3] GLOBALFOUNDRIES Singapore Pte Ltd, Singapore 738406, Singapore
[4] Rudjer Boskovic Inst, Zagreb 10000, Croatia
[5] Ecole Polytech Fed Lausanne EPFL, Ctr Quantum Sci & Engn, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Integrated circuit modeling; Entropy; Mathematical models; Generators; Flip-flops; Analytical models; Single-photon avalanche diodes; hardware security; photon counting; quantum random number generator (QRNG); single-photon avalanche diodes (SPADs); Verilog-AMS;
D O I
10.1109/JSSC.2023.3274692
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum random number generators (QRNGs) are a burgeoning technology used for a variety of applications, including modern security and encryption systems. Typical methods exploit an entropy source combined with an extraction or bit generation circuit in order to produce a random string. In integrated designs, there is often little modeling or analytical description of the entropy source, circuit extraction, and post-processing provided. In this work, we present a single-photon avalanche diode (SPAD)-based QRNG design, which utilizes the quantum random flip-flop (QRFF) method. Extensive modeling of detector and circuit imperfections that result in entropy degradation is performed. A new method to analytically model serial autocorrelations of the proposed bit generation method, which includes detector dead time, is proposed. Then, a Verilog-AMS model is developed in order to validate the analytical model in simulation. A novel transistor implementation of the QRFF circuit is presented, which enables compensation of the degradation in entropy inherent to the finite non-symmetric transitions of the random flip-flop. Finally, a full system containing two independent arrays of the QRFF circuit is manufactured and tested in a 55-nm bipolar-CMOS-DMOS (BCD) technology node, demonstrating bit generation statistics that are commensurate to the developed model. The full chip is able to generate 3.3 Gb/s of data when operated with an external LED. Pixelwise and spatial analysis of bias and correlation is performed. NIST STS (SP 800-22) and SP 800-90B are used to benchmark the generated bit strings.
引用
收藏
页码:2632 / 2647
页数:16
相关论文
共 55 条
[21]  
Killmann W., 2022, A Proposal for: Functionality Classes for Random Number Generators
[22]   Lightweight Integrated Design of PUF and TRNG Security Primitives Based on eFlash Memory in 55-nm CMOS [J].
Larimian, S. ;
Mahmoodi, M. R. ;
Strukov, D. B. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (04) :1586-1592
[23]   Device-independent quantum random-number generation [J].
Liu, Yang ;
Zhao, Qi ;
Li, Ming-Han ;
Guan, Jian-Yu ;
Zhang, Yanbao ;
Bai, Bing ;
Zhang, Weijun ;
Liu, Wen-Zhao ;
Wu, Cheng ;
Yuan, Xiao ;
Li, Hao ;
Munro, W. J. ;
Wang, Zhen ;
You, Lixing ;
Zhang, Jun ;
Ma, Xiongfeng ;
Fan, Jingyun ;
Zhang, Qiang ;
Pan, Jian-Wei .
NATURE, 2018, 562 (7728) :548-+
[24]   High-Speed Device-Independent Quantum Random Number Generation without a Detection Loophole [J].
Liu, Yang ;
Yuan, Xiao ;
Li, Ming-Han ;
Zhang, Weijun ;
Zhao, Qi ;
Zhong, Jiaqiang ;
Cao, Yuan ;
Li, Yu-Huai ;
Chen, Luo-Kan ;
Li, Hao ;
Peng, Tianyi ;
Chen, Yu-Ao ;
Peng, Cheng-Zhi ;
Shi, Sheng-Cai ;
Wang, Zhen ;
You, Lixing ;
Ma, Xiongfeng ;
Fan, Jingyun ;
Zhang, Qiang ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2018, 120 (01)
[25]   Self-Testing Quantum Random Number Generator [J].
Lunghi, Tommaso ;
Brask, Jonatan Bohr ;
Lim, Charles Ci Wen ;
Lavigne, Quentin ;
Bowles, Joseph ;
Martin, Anthony ;
Zbinden, Hugo ;
Brunner, Nicolas .
PHYSICAL REVIEW LETTERS, 2015, 114 (15)
[26]   Postprocessing for quantum random-number generators: Entropy evaluation and randomness extraction [J].
Ma, Xiongfeng ;
Xu, Feihu ;
Xu, He ;
Tan, Xiaoqing ;
Qi, Bing ;
Lo, Hoi-Kwong .
PHYSICAL REVIEW A, 2013, 87 (06)
[27]   A monolithic SPAD-based random number generator for cryptographic application [J].
Massari, Nicola ;
Tontini, Alessandro ;
Parmesan, Luca ;
Perenzoni, Matteo ;
Gruijc, Milos ;
Verbauwhede, Ingrid ;
Strohm, Thomas ;
Oshinubi, Dayo ;
Herrmann, Ingo ;
Brenneis, Andreas .
ESSCIRC 2022- IEEE 48TH EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC), 2022, :73-76
[28]  
Massari N, 2016, ISSCC DIG TECH PAP I, V59, P292, DOI 10.1109/ISSCC.2016.7418022
[29]   3.2 Megapixel 3D-Stacked Charge Focusing SPAD for Low-Light Imaging and Depth Sensing [J].
Morimoto, K. ;
Iwata, J. ;
Shinohara, M. ;
Sekine, H. ;
Abdelghafar, A. ;
Tsuchiya, H. ;
Kuroda, Y. ;
Tojima, K. ;
Endo, W. ;
Maehashi, Y. ;
Ota, Y. ;
Sasago, T. ;
Maekawa, S. ;
Hikosaka, S. ;
Kanou, T. ;
Kato, A. ;
Tezuka, T. ;
Yoshizaki, S. ;
Ogawa, T. ;
Uehira, K. ;
Ehara, A. ;
Inui, F. ;
Matsuno, Y. ;
Sakurai, K. ;
Ichikawa, T. .
2021 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2021,
[30]   Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications [J].
Morimoto, Kazuhiro ;
Ardelean, Andrei ;
Wu, Ming-Lo ;
Ulku, Arin Can ;
Antolovic, Ivan Michel ;
Bruschini, Claudio ;
Charbon, Edoardo .
OPTICA, 2020, 7 (04) :346-354