Revisiting multi-view learning: A perspective of implicitly heterogeneous Graph Convolutional Network

被引:13
|
作者
Zou, Ying [1 ]
Fang, Zihan [1 ]
Wu, Zhihao [1 ]
Zheng, Chenghui [3 ]
Wang, Shiping [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350116, Peoples R China
[2] Chinese Univ Hong Kong, Guangdong Prov Key Lab Big Data Comp, Shenzhen 518172, Peoples R China
[3] Fujian Prov Acad Environm Sci, Fuzhou 350013, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view learning; Graph convolutional network; Heterogeneous graph; Meta-path;
D O I
10.1016/j.neunet.2023.10.052
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph Convolutional Network (GCN) has become a hotspot in graph-based machine learning due to its powerful graph processing capability. Most of the existing GCN-based approaches are designed for single-view data. In numerous practical scenarios, data is expressed through multiple views, rather than a single view. The ability of GCN to model homogeneous graphs is indisputable, while it is insufficient in facing the heterophily property of multi-view data. In this paper, we revisit multi-view learning to propose an implicit heterogeneous graph convolutional network that efficiently captures the heterogeneity of multi-view data while exploiting the powerful feature aggregation capability of GCN. We automatically assign optimal importance to each view when constructing the meta-path graph. High-order cross-view meta-paths are explored based on the obtained graph, and a series of graph matrices are generated. Combining graph matrices with learnable global feature representation to obtain heterogeneous graph embeddings at various levels. Finally, in order to effectively utilize both local and global information, we introduce a graph-level attention mechanism at the meta-path level that allocates private information to each node individually. Extensive experimental results convincingly support the superior performance of the proposed method compared to other state-of-the-art approaches.
引用
收藏
页码:496 / 505
页数:10
相关论文
共 50 条
  • [1] Heterogeneous Graph Neural Network With Multi-View Representation Learning
    Shao, Zezhi
    Xu, Yongjun
    Wei, Wei
    Wang, Fei
    Zhang, Zhao
    Zhu, Feida
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (11) : 11476 - 11488
  • [2] Latent Heterogeneous Graph Network for Incomplete Multi-View Learning
    Zhu, Pengfei
    Yao, Xinjie
    Wang, Yu
    Cao, Meng
    Hui, Binyuan
    Zhao, Shuai
    Hu, Qinghua
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 3033 - 3045
  • [3] Multi-scale graph diffusion convolutional network for multi-view learning
    Wang, Shiping
    Li, Jiacheng
    Chen, Yuhong
    Wu, Zhihao
    Huang, Aiping
    Zhang, Le
    ARTIFICIAL INTELLIGENCE REVIEW, 2025, 58 (06)
  • [4] Learnable Graph Convolutional Network and Feature Fusion for Multi-view Learning
    Chen, Zhaoliang
    Fu, Lele
    Yao, Jie
    Guo, Wenzhong
    Plant, Claudia
    Wang, Shiping
    arXiv, 2022,
  • [5] Heterogeneous graph convolutional network for multi-view semi-supervised classification
    Wang, Shiping
    Huang, Sujia
    Wu, Zhihao
    Liu, Rui
    Chen, Yong
    Zhang, Dell
    NEURAL NETWORKS, 2024, 178
  • [6] Joint learning of feature and topology for multi-view graph convolutional network
    Chen, Yuhong
    Wu, Zhihao
    Chen, Zhaoliang
    Dong, Mianxiong
    Wang, Shiping
    NEURAL NETWORKS, 2023, 168 : 161 - 170
  • [7] Learnable graph convolutional network and feature fusion for multi-view learning
    Chen, Zhaoliang
    Fu, Lele
    Yao, Jie
    Guo, Wenzhong
    Plant, Claudia
    Wang, Shiping
    INFORMATION FUSION, 2023, 95 : 109 - 119
  • [8] Heterogeneous Graph Contrastive Multi-view Learning
    Wang, Zehong
    Li, Qi
    Yu, Donghua
    Han, Xiaolong
    Gao, Xiao-Zhi
    Shen, Shigen
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 136 - 144
  • [9] Multi-View Graph Convolutional Network for Multimedia Recommendation
    Yu, Penghang
    Tan, Zhiyi
    Lu, Guanming
    Bao, Bing-Kun
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 6576 - 6585
  • [10] Attention-based stackable graph convolutional network for multi-view learning
    Xu, Zhiyong
    Chen, Weibin
    Zou, Ying
    Fang, Zihan
    Wang, Shiping
    NEURAL NETWORKS, 2024, 180