Low-rank parity-check codes over finite commutative rings

被引:2
作者
Kamche, Hermann Tchatchiem [1 ]
Kalachi, Herve Tale [2 ]
Djomou, Franck Rivel Kamwa [3 ]
Fouotsa, Emmanuel [4 ]
机构
[1] Univ Neuchatel, Inst Math, Neuchatel, Switzerland
[2] Natl Adv Sch Engn Yaounde, Dept Comp Engn, Yaounde, Cameroon
[3] Univ Dschang, Fac Sci, Dept Math & Comp Sci, Dschang, Cameroon
[4] Univ Bamenda, Higher Teacher Training Coll, Dept Math, Bamenda, Cameroon
关键词
Decoding algorithm; Finite rings; Galois extension; LRPC codes; Local rings; Rank metric codes;
D O I
10.1007/s00200-023-00641-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Low-Rank Parity-Check (LRPC) codes are a class of rank metric codes that have many applications specifically in network coding and cryptography. Recently, LRPC codes have been extended to Galois rings which are a specific case of finite rings. In this paper, we first define LRPC codes over finite commutative local rings, which are bricks of finite rings, with an efficient decoder. We improve the theoretical bound of the failure probability of the decoder. Then, we extend the work to arbitrary finite commutative rings. Certain conditions are generally used to ensure the success of the decoder. Over finite fields, one of these conditions is to choose a prime number as the extension degree of the Galois field. We have shown that one can construct LRPC codes without this condition on the degree of Galois extension.
引用
收藏
页数:27
相关论文
共 30 条
[1]   Low Rank Parity Check Codes: New Decoding Algorithms and Applications to Cryptography [J].
Aragon, Nicolas ;
Gaborit, Philippe ;
Hauteville, Adrien ;
Ruatta, Olivier ;
Zemor, Gilles .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (12) :7697-7717
[2]  
Baldi M., 2014, QC-LDPC code-based cryptography, DOI [10.1007/978-3-319-02556-8, DOI 10.1007/978-3-319-02556-8]
[3]  
Bardet Magali, 2020, Advances in Cryptology - ASIACRYPT 2020. 26th International Conference on the Theory and Application of Cryptology and Information Security. Proceedings. Lecture Notes in Computer Science (LNCS 12491), P507, DOI 10.1007/978-3-030-64837-4_17
[4]   An Algebraic Attack on Rank Metric Code-Based Cryptosystems [J].
Bardet, Magali ;
Briaud, Pierre ;
Bros, Maxime ;
Gaborit, Philippe ;
Neiger, Vincent ;
Ruatta, Olivier ;
Tillich, Jean-Pierre .
ADVANCES IN CRYPTOLOGY - EUROCRYPT 2020, PT III, 2020, 12107 :64-93
[5]  
Becker A., 2012, ADV CRYPTOLOGY EUROC
[6]   Polynomial functions over finite commutative rings [J].
Bulyovszky, Balazs ;
Horvath, Gabor .
THEORETICAL COMPUTER SCIENCE, 2017, 703 :76-86
[7]   Generalization of low rank parity-check (LRPC) codes over the ring of integers modulo a positive integer [J].
Djomou, Franck Rivel Kamwa ;
Kalachi, Herve Tale ;
Fouotsa, Emmanuel .
ARABIAN JOURNAL OF MATHEMATICS, 2021, 10 (02) :357-366
[8]   Counting codes over rings [J].
Dougherty, Steven T. ;
Salturk, Esengul .
DESIGNS CODES AND CRYPTOGRAPHY, 2014, 73 (01) :151-165
[9]   MDS codes over finite principal ideal rings [J].
Dougherty, Steven T. ;
Kim, Jon-Lark ;
Kulosman, Hamid .
DESIGNS CODES AND CRYPTOGRAPHY, 2009, 50 (01) :77-92
[10]  
El Qachchach I, 2018, IEEE WCNC