High-order moving immersed boundary and its application to a resolved CFD-DEM model

被引:8
作者
Barbeau, Lucka [1 ]
Golshan, Shahab [1 ]
Deng, Jieyao [2 ]
Etienne, Stephane [2 ]
Beguin, Cedric [2 ]
Blais, Bruno [1 ]
机构
[1] Ecole Polytech Montreal, Dept Chem Engn, Res Unit Ind Flows Proc URPEI, POB 6079,Stn Ctr Ville, Montreal, PQ H3C 3A7, Canada
[2] Ecole Polytech Montreal, Dept Mech Engn, Montreal Stn Ctr Ville, POB 6079,Stn Ctr Ville, Montreal, PQ H3C 3A7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Sharp interface method; Finite element method (FEM); Immersed boundary; High-order methods; Navier-Stokes incompressible flow; Computational fluid dynamics with the discrete; element method (CFD-DEM); FINITE-ELEMENT-METHOD; NUMERICAL-SIMULATION; FLOW; DRAG;
D O I
10.1016/j.compfluid.2023.106094
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The sharp interface immersed boundary method (IBM) is a powerful tool to simulate the flow around moving objects. This paper extends this method to simulate the motion of particles immersed in a fluid. We introduce a new implicit coupling scheme between the solid and fluid phases, verify the high-order of convergence of the scheme, and validate it using four cases. The fluid dynamics is simulated using a streamline upwind Petrov-Galerkin and pressure-stabilizing Petrov-Galerkin (SUPG/PSPG) stabilizations. The particles' dynamics and contact are solved using Newton's second law of motion and a soft sphere contact model derived from the discrete element method. The first validation case is the sedimentation of a lone particle with a Reynolds number smaller than 32. The second validation case is the rise of a positively buoyant particle at a high Reynolds number (2500). The third validation case demonstrates the stability of the scheme when particles are in contact and exhibit the classical drafting, kissing, and tumbling (DKT) behavior. Finally, we use the scheme to study the Boycott effect with a larger number of particles (64) to show the stability of the scheme in cases with numerous particle-particle and particle-wall contacts.
引用
收藏
页数:14
相关论文
共 53 条
[1]   A numerical method for fully resolved simulation (FRS) of rigid particle-flow interactions in complex flows [J].
Apte, Sourabh V. ;
Martin, Mathieu ;
Patankar, Neelesh A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (08) :2712-2738
[2]   The deal. II library, Version 9.3 [J].
Arndt, Daniel ;
Bangerth, Wolfgang ;
Blais, Bruno ;
Fehling, Marc ;
Gassmoller, Rene ;
Heister, Timo ;
Heltai, Luca ;
Koecher, Uwe ;
Kronbichler, Martin ;
Maier, Matthias ;
Munch, Peter ;
Pelteret, Jean-Paul ;
Proell, Sebastian ;
Simon, Konrad ;
Turcksin, Bruno ;
Wells, David ;
Zhang, Jiaqi .
JOURNAL OF NUMERICAL MATHEMATICS, 2021, 29 (03) :171-186
[3]   Development of a high-order continuous Galerkin sharp-interface immersed boundary method and its application to incompressible flow problems [J].
Barbeau, Lucka ;
Etienne, Stephane ;
Beguin, Cedric ;
Blais, Bruno .
COMPUTERS & FLUIDS, 2022, 239
[4]   Experimental methods in chemical engineering: Unresolved CFD-DEM [J].
Berard, Ariane ;
Patience, Gregory S. ;
Blais, Bruno .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 98 (02) :424-440
[5]   Lethe: An open-source parallel high-order adaptative CFD solver for incompressible flows [J].
Blais, Bruno ;
Barbeau, Lucka ;
Bibeau, Valerie ;
Gauvin, Simon ;
El Geitani, Toni ;
Golshan, Shahab ;
Kamble, Rajeshwari ;
Mirakhori, Ghazaleh ;
Chaouki, Jamal .
SOFTWAREX, 2020, 12
[6]   Experimental Methods in Chemical Engineering: Discrete Element Method-DEM [J].
Blais, Bruno ;
Vidal, David ;
Bertrand, Francois ;
Patience, Gregory S. ;
Chaouki, Jamal .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2019, 97 (07) :1964-1973
[7]   Sedimentation of blood corpuscles. [J].
Boycott, AE .
NATURE, 1920, 104 :532-532
[8]   Comparison of formulas for drag coefficient and settling velocity of spherical particles [J].
Cheng, Nian-Sheng .
POWDER TECHNOLOGY, 2009, 189 (03) :395-398
[9]   An immersed boundary method for complex incompressible flows [J].
Choi, Jung-Il ;
Oberoi, Roshan C. ;
Edwards, Jack R. ;
Rosati, Jacky A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 224 (02) :757-784
[10]  
Crowe CT, 2012, MULTIPHASE FLOWS WITH DROPLETS AND PARTICLES, 2ND EDITION, P17