Deep Reinforcement Learning Based Resource Allocation in Multi-UAV-Aided MEC Networks

被引:60
|
作者
Chen, Jingxuan [1 ,2 ]
Cao, Xianbin [1 ,2 ,3 ]
Yang, Peng [1 ,2 ,3 ]
Xiao, Meng [1 ,2 ]
Ren, Siqiao [1 ,2 ]
Zhao, Zhongliang [1 ,2 ,3 ]
Wu, Dapeng Oliver [4 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Key Lab Adv Technol Near Space Informat Syst, Minist Ind & Informat Technol China, Beijing 100191, Peoples R China
[3] Peng Cheng Lab, Dept Math & Theories, Shenzhen 518055, Guangdong, Peoples R China
[4] City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy consumption; Resource management; Autonomous aerial vehicles; Task analysis; Optimization; Trajectory; Energy efficiency; MEC; UAV; resource allocation; movement control; DRL; EDGE; OPTIMIZATION;
D O I
10.1109/TCOMM.2022.3226193
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Resource allocation for mobile edge computing (MEC) in unmanned aerial vehicle (UAV) networks has been a popular research issue. Different from existing works, this paper considers a multi-UAV-aided uplink communication scenario and investigates a resource allocation problem of minimizing the total system latency and the energy consumption, subject to constraints on transmit power of mobile users (MUs), system latency caused by transmission and computation. The problem is confirmed to be a challenging time-series mixed-integer non-convex programming problem, and we propose a joint UAV Movement control, MU Association and MU Power control (UMAP) algorithm to solve it effectively, where three sub-problems are optimized iteratively. Specifically, UAV movement and MU association are optimized utilizing deep reinforcement learning (DRL) to decrease the energy consumption and system latency. Next, a closed-form solution of the MU transmit power is derived. Finally, simulation results show that the UMAP algorithm can significantly decrease the system latency and energy consumption and increase the coverage rate compared with benchmark algorithms.
引用
收藏
页码:296 / 309
页数:14
相关论文
共 50 条
  • [1] Trajectory Design and Resource Allocation for Multi-UAV Networks: Deep Reinforcement Learning Approaches
    Chang, Zheng
    Deng, Hengwei
    You, Li
    Min, Geyong
    Garg, Sahil
    Kaddoum, Georges
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (05): : 2940 - 2951
  • [2] Joint Task Offloading and Resource Allocation in Multi-UAV Multi-Server Systems: An Attention-Based Deep Reinforcement Learning Approach
    Wu, Guohua
    Liu, Zelin
    Fan, Mingfeng
    Wu, Keyu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (08) : 11964 - 11978
  • [3] Deep Reinforcement Learning-Empowered Trajectory and Resource Allocation Optimization for UAV-Assisted MEC Systems
    Sun, Haowen
    Chen, Ming
    Pan, Yijin
    Cang, Yihan
    Zhao, Jiahui
    Sun, Yuanzhi
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (07) : 1823 - 1827
  • [4] Joint Task Offloading, Resource Allocation, and Load-Balancing Optimization in Multi-UAV-Aided MEC Systems
    Elgendy, Ibrahim A.
    Meshoul, Souham
    Hammad, Mohamed
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [5] Deep reinforcement learning based trajectory design and resource allocation for task-aware multi-UAV enabled MEC networks
    Li, Zewu
    Xu, Chen
    Zhang, Zhanpeng
    Wu, Runze
    COMPUTER COMMUNICATIONS, 2024, 213 : 88 - 98
  • [6] Deep Reinforcement Learning-based Trajectory Optimization and Resource Allocation for Secure UAV-Enabled MEC Networks
    Gao, Yuan
    Ding, Yu
    Wang, Ye
    Lu, Weidang
    Guo, Yang
    Wang, Ping
    Caoi, Jiang
    IEEE INFOCOM 2024-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS, INFOCOM WKSHPS 2024, 2024,
  • [7] Deep Reinforcement Learning for Computation and Communication Resource Allocation in Multiaccess MEC Assisted Railway IoT Networks
    Xu, Jianpeng
    Ai, Bo
    Chen, Liangyu
    Cui, Yaping
    Wang, Ning
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 23797 - 23808
  • [8] Deep Reinforcement Learning-Based Resource Allocation for Secure RIS-aided UAV Communication
    Iqbal, Amjad
    Al-Habashna, Ala'a
    Wainer, Gabriel
    Bouali, Faouzi
    Boudreau, Gary
    Wali, Khan
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,
  • [9] Resource Allocation and Collaborative Offloading in Multi-UAV-Assisted IoV With Federated Deep Reinforcement Learning
    Chen, Zheyi
    Huang, Zhiqin
    Zhang, Junjie
    Cheng, Hongju
    Li, Jie
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 4629 - 4640
  • [10] Resource Allocation and Trajectory Design for MISO UAV-Assisted MEC Networks
    Liu, Boyang
    Wan, Yiyao
    Zhou, Fuhui
    Wu, Qihui
    Hu, Rose Qingyang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (05) : 4933 - 4948