Homological kernels of monoidal functors

被引:1
作者
Coulembier, Kevin [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Camperdown, NSW 2006, Australia
来源
SELECTA MATHEMATICA-NEW SERIES | 2023年 / 29卷 / 02期
关键词
Universal tensor category; Multi-representability; Flat functor; Homotopy category; Abelian envelope; CATEGORIES;
D O I
10.1007/s00029-023-00829-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that each rigid monoidal category a over a field defines a family of universal tensor categories, which together classify all faithful monoidal functors from a to tensor categories. Each of the universal tensor categories classifies monoidal functors of a given "homological kernel' and can be realised as a sheaf category, not necessarily on a. This yields a theory of "local abelian envelopes' which completes the notion of monoidal abelian envelopes.
引用
收藏
页数:46
相关论文
共 29 条
[1]  
[Anonymous], 1966, P C CATEGORICAL ALGE
[2]   TENSOR STRUCTURE FOR NORI MOTIVES [J].
Barbieri-Viale, Luca ;
Huber, Annette ;
Prest, Mike .
PACIFIC JOURNAL OF MATHEMATICS, 2020, 306 (01) :1-30
[3]  
Beligiannis Apostolos, 2000, Homology Homotopy Appl., V2, P147
[4]  
Benson D, 2021, Arxiv, DOI arXiv:2003.10499
[5]  
Borceux Francis, 1996, CAH TOP GEOM DIF, V37, P145
[6]   A basis theorem for the affine oriented Brauer category and its cyclotomic quotients [J].
Brundan, Jonathan ;
Comes, Jonathan ;
Nash, David ;
Reynolds, Andrew .
QUANTUM TOPOLOGY, 2017, 8 (01) :75-112
[7]   Monoidal abelian envelopes and a conjecture of Benson and Etingof [J].
Coulembier, Kevin ;
Entova-Aizenbud, Inna ;
Heidersdorf, Thorsten .
ALGEBRA & NUMBER THEORY, 2022, 16 (09) :2099-2117
[8]   Monoidal abelian envelopes with a quotient property [J].
Coulembier, Kevin ;
Etingof, Pavel ;
Ostrik, Victor ;
Pauwels, Bregje .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (794) :179-214
[9]  
Coulembier K, 2021, Arxiv, DOI arXiv:2011.02137
[10]   Freely adjoining monoidal duals [J].
Coulembier, Kevin ;
Street, Ross ;
van den Bergh, Michel .
MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2021, 31 (07) :748-768