Shape stabilized phase change materials based on different support structures for thermal energy storage applications-A review

被引:86
|
作者
Chinnasamy, Veerakumar [1 ]
Heo, Jaehyeok [2 ]
Jung, Sungyong [1 ]
Lee, Hoseong [3 ]
Cho, Honghyun [1 ]
机构
[1] Chosun Univ, Dept Mech Engn, 309 Pilmundaero, Gwangju 61452, South Korea
[2] Korea Inst Energy Res, New & Renewable Energy Inst, Renewable Heat Integrat Lab, Daejeon 305343, South Korea
[3] Korea Univ, Dept Mech Engn, 409 Innovat Hall Bldg, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Thermal energy storage; Phase change material; Shape stabilized; Porous structure; Microencapsulation; Support structures; PARAFFIN/EXPANDED GRAPHITE COMPOSITE; MICROENCAPSULATED N-OCTADECANE; STEARIC-ACID; LATENT-HEAT; HYBRID SHELL; CARBON NANOTUBES; EXPANDED GRAPHITE; GRAPHENE-OXIDE; PICKERING EMULSION; EUTECTIC MIXTURES;
D O I
10.1016/j.energy.2022.125463
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal energy storage systems play a crucial role in energy conservation and balancing energy demand/supply. Recent thermal storage techniques and novel strategies have expanded their usage in various applications. However, leakage during phase change and poor thermal conductivity limits using phase change materials (PCM) as a potential thermal storage medium. Shape-stabilized phase change materials (SSPCM) can effectively enhance heat transfer and prevent leakage. Besides, it provides flexible structures, good mechanical strength, and stability. Furthermore, loading a maximum quantity of PCM in the support structure enables improved efficiency of SSPCMs and enhances heat transportation. In this review work, SSPCMs and different types of support structures used to prepare SSPCM are discussed and presented with their advantages and disadvantages. It is also aimed to provide comprehensive information on microencapsulation techniques, metallic, carbon-based, and polymeric support employed in SSPCM preparation. This review also sheds some light on the applications of SSPCM, more specifically, thermal management and storage. Finally, the future scope of research on SSPCM is briefly discussed. It is believed that the information presented in this review will help the readers to understand SSPCM and different support structures for SSPCM preparation, along with various application techniques.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage
    Lin, Yaxue
    Jia, Yuting
    Alva, Guruprasad
    Fang, Guiyin
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 : 2730 - 2742
  • [42] Advancement in phase change materials for thermal energy storage applications
    Kant, Karunesh
    Shukla, A.
    Sharma, Atul
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 172 : 82 - 92
  • [43] Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review
    Alva, Guruprasad
    Lin, Yaxue
    Liu, Lingkun
    Fang, Guiyin
    ENERGY AND BUILDINGS, 2017, 144 : 276 - 294
  • [44] Review on thermal energy storage with phase change:: materials, heat transfer analysis and applications
    Zalba, B
    Marín, JM
    Cabeza, LF
    Mehling, H
    APPLIED THERMAL ENGINEERING, 2003, 23 (03) : 251 - 283
  • [45] A review on thermal energy storage using phase change materials in passive building applications
    Ben Romdhane, Sahar
    Amamou, Amani
    Ben Khalifa, Rim
    Said, Nejla Mahjoub
    Younsi, Zohir
    Jemni, Abdelmajid
    JOURNAL OF BUILDING ENGINEERING, 2020, 32 (32):
  • [46] A review on phase change materials for thermal energy storage in buildings: Heating and hybrid applications
    Faraj, Khaireldin
    Khaled, Mahmoud
    Faraj, Jalal
    Hachem, Farouk
    Castelain, Cathy
    JOURNAL OF ENERGY STORAGE, 2021, 33
  • [47] Review on bio-based shape-stable phase change materials for thermal energy storage and utilization
    Wang, Chongwei
    Cheng, Chuanxiao
    Jin, Tingxiang
    Dong, Hongsheng
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2022, 14 (05)
  • [48] Preparation and performance study of porous biochar-based shape-stabilized phase change materials for thermal energy storage
    Zhang, Yan
    Yan, Jiajuan
    Xie, Haiwei
    Luo, Jianyun
    BIOMASS CONVERSION AND BIOREFINERY, 2024, : 11065 - 11081
  • [49] Preparation and thermal energy storage properties of polyaniline aerogel-based shape-stabilized composite phase change materials
    Li M.
    Ren S.
    Liu X.
    Tao Z.
    Yang H.
    Huang Z.
    Yang M.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (03): : 458 - 469
  • [50] Thermal energy storage performance of hierarchical porous kaolinite geopolymer based shape-stabilized composite phase change materials
    Zhang, Haomin
    Gao, Huan
    Bernardo, Enrico
    Lei, Shengjun
    Wang, Ling
    CERAMICS INTERNATIONAL, 2023, 49 (18) : 29808 - 29819