Unconditional error analysis of a linearized BDF2 virtual element method for nonlinear Ginzburg-Landau equation with variable time step?

被引:14
作者
Wang, Nan [1 ]
Li, Meng [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2023年 / 116卷
基金
中国国家自然科学基金;
关键词
Virtual element method; Time-variable-step BDF2 method; Nonlinear Ginzburg-Landau equation; Unconditional error estimate; STOKES PROBLEM; STABILITY; FEMS; SCHEME; MODEL;
D O I
10.1016/j.cnsns.2022.106889
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a virtual element method in space for the nonlinear Ginzburg-Landau equation, while a linearized time-variable-step second order backward differentiation formula (BDF2) is adopted in time. The error splitting approach is used to prove the unconditional optimal error estimate of the derived scheme under the mild restriction on the ratio of adjacent time-steps ratios (similarly proposed in Liao and Zhang 2021, Zhang and Zhao 2021). By using the techniques of the discrete complementary convolution (DOC) kernels and the discrete complementary convolution (DCC) kernels, we obtain the boundedness and error estimates of the solution of time-discrete system. Moreover, the optimal convergence in L2-norm for the fully discrete scheme is finally derived. Numerical examples on a set of polygonal meshes are given to validate our theoretical results.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:24
相关论文
共 47 条
  • [1] Equivalent projectors for virtual element methods
    Ahmad, B.
    Alsaedi, A.
    Brezzi, F.
    Marini, L. D.
    Russo, A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) : 376 - 391
  • [2] ON FULLY DISCRETE GALERKIN METHODS OF 2ND-ORDER TEMPORAL ACCURACY FOR THE NONLINEAR SCHRODINGER-EQUATION
    AKRIVIS, GD
    DOUGALIS, VA
    KARAKASHIAN, OA
    [J]. NUMERISCHE MATHEMATIK, 1991, 59 (01) : 31 - 53
  • [3] A C1 VIRTUAL ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION WITH POLYGONAL MESHES
    Antonietti, P. F.
    Da Veiga, L. Beirao
    Scacchi, S.
    Verani, M.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) : 34 - 56
  • [4] A STREAM VIRTUAL ELEMENT FORMULATION OF THE STOKES PROBLEM ON POLYGONAL MESHES
    Antonietti, P. F.
    da Veiga, L. Beirao
    Mora, D.
    Verani, M.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) : 386 - 404
  • [5] The world of the complex Ginzburg-Landau equation
    Aranson, IS
    Kramer, L
    [J]. REVIEWS OF MODERN PHYSICS, 2002, 74 (01) : 99 - 143
  • [6] A second order backward difference method with variable steps for a parabolic problem
    Becker, J
    [J]. BIT, 1998, 38 (04): : 644 - 662
  • [7] Virtual Element Methods for plate bending problems
    Brezzi, Franco
    Marini, L. Donatella
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 253 : 455 - 462
  • [8] Unconditional optimal error estimates for BDF2-FEM for a nonlinear Schrodinger equation
    Cai, Wentao
    Li, Jian
    Chen, Zhangxin
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 331 : 23 - 41
  • [9] A SECOND ORDER BDF NUMERICAL SCHEME WITH VARIABLE STEPS FOR THE CAHN-HILLIARD EQUATION
    Chen, Wenbin
    Wang, Xiaoming
    Yan, Yue
    Zhang, Zhuying
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (01) : 495 - 525
  • [10] VIRTUAL ELEMENTS FOR THE NAVIER-STOKES PROBLEM ON POLYGONAL MESHES
    da Veiga, L. Beirao
    Lovadina, C.
    Vacca, G.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (03) : 1210 - 1242