Forecasting tourist arrivals using dual decomposition strategy and an improved fuzzy time series method

被引:4
|
作者
Liang, Xiaozhen [1 ]
Wu, Zhikun [1 ]
机构
[1] Shanghai Univ, Sch Management, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Forecast of tourist arrivals; Dual decomposition strategy; Fuzzy C-means algorithm; Fuzzy time series; EMPIRICAL MODE DECOMPOSITION; EARLY-WARNING SYSTEM; MULTIOBJECTIVE OPTIMIZATION; NEURAL-NETWORK; WAVELET TRANSFORM; HYBRID MODEL; DEMAND; ENROLLMENTS; ALGORITHM; ARMA;
D O I
10.1007/s00521-021-06671-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tourist arrivals forecasting has become an increasingly hot issue due to its important role in the tourism industry and hence the whole economy of a country. However, owing to the complex characteristics of tourist arrivals series, such as seasonality, randomness, and non-linearity, forecasting tourist arrivals remains a challenging task. In this paper, a hybrid model of dual decomposition and an improved fuzzy time series method is proposed for tourist arrivals forecasting. In the novel model, two stages are mainly involved, i.e., dual decomposition and integrated forecasting. In the first stage, a dual decomposition strategy, which can overcome the potential defects of individual decomposition approaches, is designed to fully extract the main features of the tourist arrivals series and reduce the data complexity. In the second stage, a fuzzy time series method with fuzzy C-means algorithm as the discretization method is developed for prediction. In the empirical study, the proposed model is implemented to predict the monthly tourist arrivals to Hong Kong from USA, UK, and Germany. The results show that our hybrid model can obtain more accurate and more robust prediction results than benchmark models. Relative to the benchmark fuzzy time series models, the hybrid models using traditional decomposition methods and strategies, as well as the traditional single prediction models, our proposed model shows a significant improvement, with the improvement percentages at about 80, 70, and 50%, respectively. Therefore, we can conclude that the proposed model is a very promising tool for forecasting future tourist arrivals or other related fields with complex time series.
引用
收藏
页码:7161 / 7183
页数:23
相关论文
共 50 条
  • [41] An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization
    Kuo, I-Hong
    Horng, Shi-Jinn
    Kao, Tzong-Wann
    Lin, Tsung-Lieh
    Lee, Cheng-Ling
    Pan, Yi
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (03) : 6108 - 6117
  • [42] Time series forecasting using fuzzy techniques
    Afanasieva, T.
    Yarushkina, N.
    Toneryan, M.
    Zavarzin, D.
    Sapunkov, A.
    Sibirev, I.
    PROCEEDINGS OF THE 2015 CONFERENCE OF THE INTERNATIONAL FUZZY SYSTEMS ASSOCIATION AND THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY, 2015, 89 : 1068 - 1075
  • [43] An Improvement in Forecasting Interval based Fuzzy Time Series
    Pal, Shanoli Samui
    Pal, Tandra
    Kar, Samarjit
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 1390 - 1394
  • [44] A fuzzy integrated logical forecasting model for dry bulk shipping index forecasting: An improved fuzzy time series approach
    Duru, Okan
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (07) : 5372 - 5380
  • [45] An Improved Fuzzy Time Series Forecasting Model Based on Particle Swarm Intervalization
    Davari, Soheil
    Zarandi, Mohammad Hossein Fazel
    Turksen, I. Burhan
    2009 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, 2009, : 203 - +
  • [46] Probabilistic Forecasting With Fuzzy Time Series
    de Lima Silva, Petronio Candido
    Sadaei, Hossein Javedani
    Ballini, Rosangela
    Guimaraes, Frederico Gadelha
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (08) : 1771 - 1784
  • [47] Solar Energy Forecasting With Fuzzy Time Series Using High-Order Fuzzy Cognitive Maps
    Orang, Omid
    Silva, Rodrigo
    de Lima e Silva, PetrOnio Candido
    Guimaraes, Frederico Gadelha
    2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [48] PROBABILISTIC AND INTUITIONISTIC FUZZY SETS-BASED METHOD FOR FUZZY TIME SERIES FORECASTING
    Gangwar, Sukhdev S.
    Kumar, Sanjay
    CYBERNETICS AND SYSTEMS, 2014, 45 (04) : 349 - 361
  • [49] Forecasting tourist arrivals using multivariate singular spectrum analysis
    Saayman, Andrea
    de Klerk, Jacques
    TOURISM ECONOMICS, 2019, 25 (03) : 330 - 354
  • [50] Fuzzy time series forecasting method based on Gustafson-Kessel fuzzy clustering
    Egrioglu, E.
    Aladag, C. H.
    Yolcu, U.
    Uslu, V. R.
    Erilli, N. A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (08) : 10355 - 10357