Modified generative adversarial networks for image classification

被引:1
|
作者
Zhao, Zhongtang [1 ,2 ]
Li, Ruixian [3 ]
机构
[1] Zhengzhou Univ Aeronaut, Sch Intelligent Engn, Zhengzhou 450000, Peoples R China
[2] Beijing Inst Technol, Intelligent Robot & Syst Adv Innovat Ctr, Beijing 100081, Peoples R China
[3] Informat Engn Univ, Sch Informat Syst Engn, Zhengzhou 450000, Peoples R China
基金
中国国家自然科学基金;
关键词
Image classification; Generative adversarial networks; Discriminant network; Cooperation learning; ALGORITHM; SEARCH;
D O I
10.1007/s12065-021-00665-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the image classification task, the existing neural network models have insufficient ability to characterize the features of the classified objects, which leads to the problem of low recognition accuracy. Therefore, we propose a modified Generative Adversarial Networks (GAN) for image classification. Based on the traditional generative adversarial network, By constructing multiple generation models and introducing collaboration mechanism, the generation models can learn from each other and make progress together in the training process to improve the fitting ability of the model for real data and further improve the classification quality. Finally, a generative adversarial network is designed to generate the occlusion samples, so that the model has good robustness for the occlusion objects recognition. The Top-1 error rate is used as the evaluation index. The experiments are conducted on the public data sets containing Cifar10, Cifar100, ImageNet2012. The comparison experiment results show that the proposed method can improve the feature representation ability of the GAN and improve the accuracy of image classification. The average accuracy is higher than 90% and the error rate is lower than 1.0%.
引用
收藏
页码:1899 / 1906
页数:8
相关论文
共 50 条
  • [31] A novel approach based on modified cycle generative adversarial networks for image steganography
    Kuppusamy, P.G.
    Ramya, K.C.
    Sheeba Rani, S.
    Sivaram, M.
    Dhasarathan, Vigneswaran
    Scalable Computing, 2020, 21 (01): : 63 - 72
  • [32] Active Generative Adversarial Network for Image Classification
    Kong, Quan
    Tong, Bin
    Klinkigt, Martin
    Watanabe, Yuki
    Akira, Naoto
    Murakami, Tomokazu
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 4090 - 4097
  • [33] Fingerprinting Image-to-Image Generative Adversarial Networks
    Li, Guanlin
    Xu, Guowen
    Qiu, Han
    Guo, Shangwei
    Wang, Run
    Li, Jiwei
    Zhang, Tianwei
    Lu, Rongxing
    9TH EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY, EUROS&P 2024, 2024, : 41 - 61
  • [34] Image Inpainting Using Generative Adversarial Networks
    Luo H.-L.
    Ao Y.
    Yuan P.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (10): : 1891 - 1898
  • [35] A review on Generative Adversarial Networks for image generation
    de Souza, Vinicius Luis Trevisan
    Marques, Bruno Augusto Dorta
    Batagelo, Harlen Costa
    Gois, Joao Paulo
    COMPUTERS & GRAPHICS-UK, 2023, 114 : 13 - 25
  • [36] Review of Generative Adversarial Networks in Image Generation
    Chi, Wanle
    Choo, Yun Huoy
    Goh, Ong Sing
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2022, 26 (01) : 3 - 7
  • [37] Generative Adversarial Networks in Medical Image Processing
    Gong, Meiqin
    Chen, Siyu
    Chen, Qingyuan
    Zeng, Yuanqi
    Zhang, Yongqing
    CURRENT PHARMACEUTICAL DESIGN, 2021, 27 (15) : 1856 - 1868
  • [38] Generative adversarial networks for SAR image realism
    Lewis, Benjamin
    Liu, Jennifer
    Wong, Amy
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXV, 2018, 10647
  • [39] Generative Adversarial Networks in Image Generation and Recognition
    Popuri, Anoushka
    Miller, John
    2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023, 2023, : 1294 - 1297
  • [40] Image Inpainting Based on Generative Adversarial Networks
    Jiang, Yi
    Xu, Jiajie
    Yang, Baoqing
    Xu, Jing
    Zhu, Junwu
    IEEE ACCESS, 2020, 8 (08): : 22884 - 22892