A class of fractional parabolic reaction-diffusion systems with control of total mass: theory and numerics

被引:2
作者
Daoud, Maha [1 ]
Laamri, El-Haj [2 ]
Baalal, Azeddine [1 ]
机构
[1] Univ Hassan 2, Fac Sci Ain Chock, Dept Math & Informat, Casablanca 20100, Morocco
[2] Univ Lorraine, Inst Elie Cartan Lorraine, F-54506 Vandoeuvre Les Nancy, France
关键词
Reaction-diffusion system; Fractional diffusion; Strong solution; Global existence; Numerical simulation; GLOBAL EXISTENCE; REGULARITY; EQUATIONS; TIME; DISSIPATION; L-1;
D O I
10.1007/s11868-023-00576-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove global-in-time existence of strong solutions to a class of fractional parabolic reaction-diffusion systems posed in a bounded domain of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>N$$\end{document}. The nonlinear reactive terms are assumed to satisfy natural structure conditions which provide nonnegativity of the solutions and uniform control of the total mass. The diffusion operators are of type ui ↦di(-Delta)sui\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_i\mapsto d_i(-\Delta )<^>s u_i$$\end{document} where 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}. Global existence of strong solutions is proved under the assumption that the nonlinearities are at most of polynomial growth. Our results extend previous results obtained when the diffusion operators are of type ui ↦-di Delta ui\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_i\mapsto -d_i\Delta u_i$$\end{document}. On the other hand, we use numerical simulations to examine the global existence of solutions to systems with exponentially growing right-hand sides, which remains so far an open theoretical question even in the case s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document}.
引用
收藏
页数:36
相关论文
共 78 条
[1]  
Abatangelo N., 2019, CONT RES ELLIPTIC PD
[2]   Existence Results to a Class of Nonlinear Parabolic Systems Involving Potential and Gradient Terms [J].
Abdellaoui, B. ;
Attar, A. ;
Bentifour, R. ;
Laamri, E-H .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (04)
[3]   A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian [J].
Acosta, Gabriel ;
Bersetche, Francisco M. ;
Pablo Borthagaray, Juan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (04) :784-816
[4]   ON A SEMI-LINEAR SYSTEM OF NONLOCAL TIME AND SPACE REACTION DIFFUSION EQUATIONS WITH EXPONENTIAL NONLINEARITIES [J].
Ahmad, B. ;
Alsaedi, A. ;
Hnaien, D. ;
Kirane, M. .
JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2018, 30 (01) :17-40
[5]   On Nonlinear Nonlocal Systems of Reaction Diffusion Equations [J].
Ahmad, B. ;
Alhothuali, M. S. ;
Alsulami, H. H. ;
Kirane, M. ;
Timoshin, S. .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[6]   A triangular nonlinear reaction-fractional diffusion system with a balance law [J].
Alsaedi, Ahmed ;
Al-Yami, Maryam ;
Kirane, Mokhtar ;
Momenkhan, Faten .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (05) :1825-1830
[7]  
Andreu-Vaillo Fuensanta., 2010, Mathematical surveys and monographs
[8]  
v, V165
[9]  
Atmani S., Fractional parabolic reaction-diffusion systems with gradient terms and different diffusion
[10]  
Atmani S., Hal-04123233