Prediction of single-cell RNA expression profiles in live cells by Raman microscopy with Raman2RNA

被引:17
作者
Kobayashi-Kirschvink, Koseki J. [1 ,2 ]
Comiter, Charles S. [1 ,3 ,4 ]
Gaddam, Shreya [1 ,8 ]
Joren, Taylor [1 ]
Grody, Emanuelle I. [1 ]
Ounadjela, Johain R. [1 ]
Zhang, Ke [1 ,3 ]
Ge, Baoliang [5 ]
Kang, Jeon Woong [2 ]
Xavier, Ramnik J. [1 ,6 ,7 ]
So, Peter T. C. [2 ,5 ]
Biancalani, Tommaso [1 ,8 ]
Shu, Jian [1 ,3 ]
Regev, Aviv [1 ,8 ]
机构
[1] Broad Inst MIT & Harvard, Klarman Cell Observ, Cambridge, MA 02142 USA
[2] MIT, GR Harrison Spect Lab, Laser Biomed Res Ctr, Cambridge, MA 02139 USA
[3] Harvard Med Sch, Massachusetts Gen Hosp, Cutaneous Biol Res Ctr, Boston, MA USA
[4] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA USA
[5] MIT, Dept Mech & Biol Engn, Cambridge, MA USA
[6] Massachusetts Gen Hosp, Ctr Computat & Integrat Biol, Boston, MA USA
[7] Massachusetts Gen Hosp, Dept Mol Biol, Boston, MA USA
[8] Genentech Inc, South San Francisco, CA 94080 USA
基金
日本学术振兴会;
关键词
D O I
10.1038/s41587-023-02082-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Single-cell RNA sequencing and other profiling assays have helped interrogate cells at unprecedented resolution and scale, but are inherently destructive. Raman microscopy reports on the vibrational energy levels of proteins and metabolites in a label-free and nondestructive manner at subcellular spatial resolution, but it lacks genetic and molecular interpretability. Here we present Raman2RNA (R2R), a method to infer single-cell expression profiles in live cells through label-free hyperspectral Raman microscopy images and domain translation. We predict single-cell RNA sequencing profiles nondestructively from Raman images using either anchor-based integration with single molecule fluorescence in situ hybridization, or anchor-free generation with adversarial autoencoders. R2R outperformed inference from brightfield images (cosine similarities: R2R >0.85 and brightfield <0.15). In reprogramming of mouse fibroblasts into induced pluripotent stem cells, R2R inferred the expression profiles of various cell states. With live-cell tracking of mouse embryonic stem cell differentiation, R2R traced the early emergence of lineage divergence and differentiation trajectories, overcoming discontinuities in expression space. R2R lays a foundation for future exploration of live genomic dynamics.
引用
收藏
页码:1726 / 1734
页数:27
相关论文
共 51 条
  • [1] Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems
    Alon, Shahar
    Goodwin, Daniel R.
    Sinha, Anubhav
    Wassie, Asmamaw T.
    Chen, Fei
    Daugharthy, Evan R.
    Bando, Yosuke
    Kajita, Atsushi
    Xue, Andrew G.
    Marrett, Karl
    Prior, Robert
    Cui, Yi
    Payne, Andrew C.
    Yao, Chun-Chen
    Suk, Ho-Jun
    Wang, Ru
    Yu, Chih-Chieh
    Tillberg, Paul
    Reginato, Paul
    Pak, Nikita
    Liu, Songlei
    Punthambaker, Sukanya
    Iyer, Eswar P. R.
    Kohman, Richie E.
    Miller, Jeremy A.
    Lein, Ed S.
    Lako, Ana
    Cullen, Nicole
    Rodig, Scott
    Helvie, Karla
    Abravanel, Daniel L.
    Wagle, Nikhil
    Johnson, Bruce E.
    Klughammer, Johanna
    Slyper, Michal
    Waldman, Julia
    Jane-Valbuena, Judit
    Rozenblatt-Rosen, Orit
    Regev, Aviv
    Church, George M.
    Marblestone, Adam H.
    Boyden, Edward S.
    [J]. SCIENCE, 2021, 371 (6528) : 481 - +
  • [2] [Anonymous], 2022, napari
  • [3] [Anonymous], 2021, rampy
  • [4] Ultrafast chemical imaging by widefield photothermal sensing of infrared absorption
    Bai, Yeran
    Zhang, Delong
    Lan, Lu
    Huang, Yimin
    Maize, Kerry
    Shakouri, Ali
    Cheng, Ji-Xin
    [J]. SCIENCE ADVANCES, 2019, 5 (07)
  • [5] Generalizing RNA velocity to transient cell states through dynamical modeling
    Bergen, Volker
    Lange, Marius
    Peidli, Stefan
    Wolf, F. Alexander
    Theis, Fabian J.
    [J]. NATURE BIOTECHNOLOGY, 2020, 38 (12) : 1408 - 1414
  • [6] Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram
    Biancalani, Tommaso
    Scalia, Gabriele
    Buffoni, Lorenzo
    Avasthi, Raghav
    Lu, Ziqing
    Sanger, Aman
    Tokcan, Neriman
    Vanderburg, Charles R.
    Segerstolpe, Asa
    Zhang, Meng
    Avraham-Davidi, Inbal
    Vickovic, Sanja
    Nitzan, Mor
    Ma, Sai
    Subramanian, Ayshwarya
    Lipinski, Michal
    Buenrostro, Jason
    Brown, Nik Bear
    Fanelli, Duccio
    Zhuang, Xiaowei
    Macosko, Evan Z.
    Regev, Aviv
    [J]. NATURE METHODS, 2021, 18 (11) : 1352 - +
  • [7] biomagdsb, 2020, GitHub
  • [8] Spatially resolved, highly multiplexed RNA profiling in single cells
    Chen, Kok Hao
    Boettiger, Alistair N.
    Moffitt, Jeffrey R.
    Wang, Siyuan
    Zhuang, Xiaowei
    [J]. SCIENCE, 2015, 348 (6233)
  • [9] Live-seq enables temporal transcriptomic recording of single cells
    Chen, Wanze
    Guillaume-Gentil, Orane
    Rainer, Pernille Yde
    Gaebelein, Christoph G.
    Saelens, Wouter
    Gardeux, Vincent
    Klaeger, Amanda
    Dainese, Riccardo
    Zachara, Magda
    Zambelli, Tomaso
    Vorholt, Julia A.
    Deplancke, Bart
    [J]. NATURE, 2022, 608 (7924) : 733 - +
  • [10] Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust
    Choi, Harry M. T.
    Schwarzkopf, Maayan
    Fornace, Mark E.
    Acharya, Aneesh
    Artavanis, Georgios
    Stegmaier, Johannes
    Cunha, Alexandre
    Pierce, Niles A.
    [J]. DEVELOPMENT, 2018, 145 (12):