Automatic estimation of surface and probe location for 3D imaging with bidimensional arrays

被引:1
作者
Cosarinsky, Guillermo [1 ,2 ,3 ]
Cruza, Jorge F. [1 ]
Munoz, Mario [1 ,3 ]
Camacho, Jorge [1 ]
机构
[1] CSIC, Inst Phys & Informat Technol ITEFI, Ultrasound Syst & Technol Grp GSTU, C Serrano 144, Madrid 28006, Spain
[2] Natl Atom Energy Commiss CNEA, Non Destruct Testing Dept, Ave Gral Paz 1499,B1650, Buenos Aires, Argentina
[3] Univ Alcala Henares, Escuela Politecn, Elect Dept, Ctra Madrid Barcelona,Km 33,600, Madrid 28805, Spain
关键词
Ultrasound imaging; 3D imaging; 2D array; Matrix array; Surface detection; Refraction; ULTRASONIC ARRAYS; RECONSTRUCTION;
D O I
10.1016/j.ndteint.2023.102990
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ultrasound imaging for Non Destructive Testing is frequently performed in an immersion setup, where water is used as coupling medium between the probe and the component under test. For the computation of the time delays needed for beam-forming, the shape of the component surface and probe location and orientation (PLO) must be known. In this work we develop methods for the automatic detection of the surface and the estimation of PLO for 2D array probes. In particular, the methods developed apply to three types of elementary surfaces which are usually found in industrial and structural components: planes, cylinders and spheres. The methods use the measured surface echoes Time of Flight (TOF) to fit parametric models based on ray propagation and reflection on the surface, giving the coordinates and Euler angles that define the PLO relative to the component under test. Validation experiments with four test specimens representing the three types of surfaces are presented . The accuracy and precision of estimated PLO coordinates and angles are analyzed, and a Total Focusing Method (TFM) imaging example is shown achieving a correct detection of artificial defects in the component for a different PLOs.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Advanced 3D Imaging and Analysis of SOFC Electrodes
    Tariq, F.
    Yufit, V.
    Kishimoto, M.
    Cui, G.
    Somalu, M.
    Brandon, N.
    SOLID STATE IONIC DEVICES 10, 2014, 64 (02): : 81 - 86
  • [42] Genes into geometry: imaging for mouse development in 3D
    Nieman, Brian J.
    Wong, Michael D.
    Henkelman, R. Mark
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2011, 21 (05) : 638 - 646
  • [43] Real-time 3D ultrasound imaging
    Ponomaryov, VI
    Sansores-Pech, R
    Gallegos-Funes, F
    Real-Time Imaging IX, 2005, 5671 : 19 - 29
  • [44] Electron Tomography for 3D Imaging of Nanoscale Materials
    Wolf, D.
    Kuebel, C.
    PRAKTISCHE METALLOGRAPHIE-PRACTICAL METALLOGRAPHY, 2018, 55 (08): : 527 - 538
  • [45] Challenges and advances in optical 3D mesoscale imaging
    Munck, Sebastian
    Cawthorne, Christopher
    Escamilla-Ayala, Abril
    Kerstens, Axelle
    Gabarre, Sergio
    Wesencraft, Katrina
    Battistella, Eliana
    Craig, Rebecca
    Reynaud, Emmanuel G.
    Swoger, Jim
    McConnell, Gail
    JOURNAL OF MICROSCOPY, 2022, 286 (03) : 201 - 219
  • [46] Performance Analysis of Sparse 3D SAR Imaging
    Austin, Christian D.
    Ash, Joshua N.
    Moses, Randolph L.
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XVIII, 2011, 8051
  • [47] Mueller matrix polarimetry with 3D integral imaging
    Carnicer, Artur
    Bosch, Salvador
    Javidi, Bahram
    OPTICS EXPRESS, 2019, 27 (08) : 11525 - 11536
  • [48] Standoff 3D Gamma-Ray Imaging
    Mihailescu, Lucian
    Vetter, Kai
    Chivers, Daniel
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2009, 56 (02) : 479 - 486
  • [49] Snapshot dual-view 3D imaging
    Ji, Chao
    Fang, Mengyan
    Xin, Liwei
    He, Kai
    Li, Yahui
    Wang, Xing
    Tian, Jinshou
    AIP ADVANCES, 2023, 13 (04)
  • [50] 3D imaging of semiconductor components by discrete laminography
    Batenburg, K. J.
    Palenstijn, W. J.
    Sijbers, J.
    STRESS INDUCED PHENOMENA AND RELIABILITY IN 3D MICROELECTRONICS, 2014, 1601 : 168 - 179