Computational fluid dynamic analysis of graphene oxide/water nanofluid heat transfer over a double backward-facing microchannel

被引:22
|
作者
Dehghan, Peymaneh [1 ]
Keramat, Fatemeh [1 ]
Mofarahi, Masoud [1 ,2 ]
Lee, Chang-Ha [2 ]
机构
[1] Persian Gulf Univ, Fac Petr Gas & Petrochem Engn, Dept Chem Engn, Bushehr 75169, Iran
[2] Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei Ro, Seoul 120749, South Korea
基金
新加坡国家研究基金会;
关键词
Double backward facing-step; Finite volume method; Forced convection; Graphene oxide; water nanofluid; Nusselt number enhancement; Triangular obstacle; CONVECTION FLOW ADJACENT; TRANSFER ENHANCEMENT; FORCED-CONVECTION; FRICTION FACTOR; NATURAL-CONVECTION; MIXED CONVECTION; OXIDE NANOFLUID; STEP; CHANNEL; PERFORMANCE;
D O I
10.1016/j.jtice.2023.104821
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Background: Based on the literature, increasing the heat transfer of nanofluids in the backward microchannel owing to the micro scales and significant effects of the step has been introduced as an attractive issue. Methods: The effect of an inclined step combined with different types of obstacles on the heat transfer of graphene oxide nanofluid inside a double backward-facing step (BFS) microchannel is studied in this study. The numerical model according to the finite volume method (FVM) is utilized to discretize continuity, momentum, and energy equations via ANSYS Fluent 19.0 software. The simulation of double BFS microchannel by using computational fluid dynamics (CFD) is carried out to enhance the forced convection heat transfer of graphene oxide-water nanofluid. This work aims to illuminate the influences of the Reynolds numbers (1, 50, and 100), the nanoparticles volume fraction (0, 0.02, and 0.04), the triangular obstacle existence, and the obstacle location. Significant findings: Based on the CFD results, the maximum Nusselt number of 12.7% and heat transfer coefficient of 12.3% are observed compared to the pure water in the case of triangular obstacle at the top of the first step with nanoparticle volume fraction of 4% and Reynolds numbers of 50 and 1, respectively. Furthermore, heat transfer improves with high pressure drop and friction factor is widely affected by the triangular obstacles and their locations.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] CuO/WATER NANOFLUID FLOW OVER MICROSCALE BACKWARD-FACING STEP AND ANALYSIS OF HEAT TRANSFER PERFORMANCE
    Ekiciler, Recep
    Arslan, Kamil
    HEAT TRANSFER RESEARCH, 2018, 49 (15) : 1489 - 1505
  • [2] The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel
    Alrashed, Abdullah A. A. A.
    Akbari, Omid Ali
    Heydari, Ali
    Toghraie, Davood
    Zarringhalam, Majid
    Shabani, Gholamreza Ahmadi Sheikh
    Seifi, Ali Reza
    Goodarzi, Marjan
    PHYSICA B-CONDENSED MATTER, 2018, 537 : 176 - 183
  • [3] Numerical Investigation of Fluid Flow and Heat Transfer Characteristics over Double Backward-Facing Step with Obstacles
    Mohankumar, Vishnu
    Prakash, Karaiyan Arul
    HEAT TRANSFER ENGINEERING, 2024, 45 (09) : 779 - 799
  • [4] Effect of corrugated wall combined with backward-facing step channel on fluid flow and heat transfer
    Hilo, Ali Kareem
    Abu Talib, Abd Rahim
    Iborra, Antonio Acosta
    Sultan, Mohammed Thariq Hameed
    Hamid, Mohd Faisal Abdul
    ENERGY, 2020, 190
  • [5] Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step
    Togun, Hussein
    Safaei, M. R.
    Sadri, Rad
    Kazi, S. N.
    Badarudin, A.
    Hooman, K.
    Sadeghinezhad, E.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 239 : 153 - 170
  • [6] Experimental study of nanofluids flow and heat transfer over a backward-facing step channel
    Hilo, Ali Kareem
    Abu Talib, Abd Rahim
    Acosta Iborra, Antonio
    Sultan, Mohammed Thariq Hameed
    Hamid, Mohd Faisal Abdul
    POWDER TECHNOLOGY, 2020, 372 : 497 - 505
  • [7] Fluid flow and heat transfer characteristics of separation and reattachment flow over a backward-facing step
    Xie, W. A.
    Xi, G. N.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2017, 74 : 177 - 189
  • [8] Experimental and numerical study of nanofluid flow and heat transfer over microscale backward-facing step
    Kherbeet, A. Sh.
    Mohammed, H. A.
    Salman, B. H.
    Ahmed, Hamdi E.
    Alawi, Omer A.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 79 : 858 - 867
  • [9] Investigating the influence of magnetic field on heat transfer in turbulent ferromagnetic fluid over a backward-facing step
    Sharifi, Mehran
    PHYSICS OF FLUIDS, 2024, 36 (12)
  • [10] The effect of step height of microscale backward-facing step on mixed convection nanofluid flow and heat transfer characteristics
    Kherbeet, A. Sh.
    Mohammed, H. A.
    Munisamy, K. M.
    Salman, B. H.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 68 : 554 - 566