Fused deep learning paradigm for the prediction of o6-methylguanine-DNA methyltransferase genotype in glioblastoma patients: A neuro-oncological investigation

被引:23
作者
Saxena, Sanjay [1 ]
Jena, Biswajit [2 ]
Mohapatra, Bibhabasu [1 ]
Gupta, Neha [3 ]
Kalra, Manudeep [4 ]
Scartozzi, Mario [5 ]
Saba, Luca [5 ]
Suri, Jasjit S. [6 ,7 ,8 ]
机构
[1] Int Inst Informat Technol, Dept Comp Sci & Engn, Bhubaneswar, Odisha, India
[2] SOA Univ, Inst Tech Educ & Res, Dept Comp Sci & Engn, Bhubaneswar, India
[3] Bharati Vidyapeeths Coll Engn, New Delhi, India
[4] Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA
[5] Cagliari Polo Monserrato s s, AOU, Dept Radiol, I-09124 Cagliari, Italy
[6] AtheroPoint TM LLC, Stroke Monitoring & Diagnost Div, Roseville, CA USA
[7] Global Biomed Technol Inc, Knowledge Engn Ctr, Roseville, CA USA
[8] AtheroPoint TM LLC, Stroke Diagnost & Monitoring Div, Roseville, CA 95661 USA
关键词
O6-methylguanine-DNA methyltransferase; MGMT; Glioblastoma; Machine learning; Deep learning; Brain tumor; Fused deep learning; Prognosis; MGMT METHYLATION STATUS; RISK STRATIFICATION; OVARIAN-CANCER; CLASSIFICATION; ULTRASOUND; TEXTURE; PLAQUE; STRATEGY; CORONARY; FEATURES;
D O I
10.1016/j.compbiomed.2022.106492
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The O6-methylguanine-DNA methyltransferase (MGMT) is a deoxyribonucleic acid (DNA) repairing enzyme that has been established as an essential clinical brain tumor biomarker for Glioblastoma Multiforme (GBM). Knowing the status of MGMT methylation biomarkers using multi-parametric MRI (mp-MRI) helps neuro-oncologists to analyze GBM and its treatment plan. Method: The hand-crafted radiomics feature extraction of GBM's subregions, such as edema(ED), tumor core (TC), and enhancing tumor (ET) in the machine learning (ML) framework, was investigated using support vector machine(SVM), K-Nearest Neighbours (KNN), random forest (RF), LightGBM, and extreme gradient boosting (XGB). For tissue-level analysis of the promotor genes in GBM, we used the deep residual neural network (ResNet-18) with 3D architecture, followed by EfficientNet-based investigation for variants as B0 and B1. Lastly, we analyzed the fused deep learning (FDL) framework that combines ML and DL frameworks. Result: Structural mp-MRI consisting of T1, T2, FLAIR, and T1GD having a size of 400 and 185 patients, respectively, for discovery and replication cohorts. Using the CV protocol in the ResNet-3D framework, MGMT methylation status prediction in mp-MRI gave the AUC of 0.753 (p < 0.0001) and 0.72 (p < 0.0001) for the discovery and replication cohort, respectively. We presented that the FDL is-7% superior to solo DL and-15% to solo ML. Conclusion: The proposed study aims to provide solutions for building an efficient predictive model of MGMT for GBM patients using deep radiomics features obtained from mp-MRI with the end-to-end ResNet-18 3D and FDL imaging signatures.
引用
收藏
页数:17
相关论文
共 83 条
[1]   Evolutionary Algorithm-Based Classifier Parameter Tuning for Automatic Ovarian Cancer Tissue Characterization and Classification [J].
Acharya, U. R. ;
Mookiah, M. R. K. ;
Sree, S. Vinitha ;
Yanti, R. ;
Martis, R. J. ;
Saba, L. ;
Molinari, F. ;
Guerriero, S. ;
Suri, J. S. .
ULTRASCHALL IN DER MEDIZIN, 2014, 35 (03) :237-245
[2]   GyneScan: An Improved Online Paradigm for Screening of Ovarian Cancer via Tissue Characterization [J].
Acharya, U. Rajendra ;
Sree, S. Vinitha ;
Kulshreshtha, Sanjeev ;
Molinari, Filippo ;
Koh, Joel En Wei ;
Saba, Luca ;
Suri, Jasjit S. .
TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2014, 13 (06) :529-539
[3]   Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization [J].
Acharya, U. Rajendra ;
Faust, Oliver ;
Sree, Vinitha S. ;
Alvin, A. P. C. ;
Krishnamurthi, Ganapathy ;
Seabra, Jose C. R. ;
Sanches, Joao ;
Suri, Jasjit S. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 110 (01) :66-75
[4]   ATHEROSCLEROTIC RISK STRATIFICATION STRATEGY FOR CAROTID ARTERIES USING TEXTURE-BASED FEATURES [J].
Acharya, U. Rajendra ;
Sree, S. Vinitha ;
Krishnan, M. Muthu Rama ;
Molinari, Filippo ;
Saba, Luca ;
Ho, Sin Yee Stella ;
Ahuja, Anil T. ;
Ho, Suzanne C. ;
Nicolaides, Andrew ;
Suri, Jasjit S. .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2012, 38 (06) :899-915
[5]   Non-invasive automated 3D thyroid lesion classification in ultrasound: A class of ThyroScan™ systems [J].
Acharya, U. Rajendra ;
Sree, S. Vinitha ;
Krishnan, M. Muthu Rama ;
Molinari, Filippo ;
Garberoglio, Roberto ;
Suri, Jasjit S. .
ULTRASONICS, 2012, 52 (04) :508-520
[6]  
Acharya UR, 2011, IEEE ENG MED BIO, P4489, DOI 10.1109/IEMBS.2011.6091113
[7]   Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: A multicenter study using COVLIAS 2.0 [J].
Agarwal, Mohit ;
Agarwal, Sushant ;
Saba, Luca ;
Chabert, Gian Luca ;
Gupta, Suneet ;
Carriero, Alessandro ;
Pasche, Alessio ;
Danna, Pietro ;
Mehmedovic, Armin ;
Faa, Gavino ;
Shrivastava, Saurabh ;
Jain, Kanishka ;
Jain, Harsh ;
Jujaray, Tanay ;
Singh, Inder M. ;
Turk, Monika ;
Chadha, Paramjit S. ;
Johri, Amer M. ;
Khanna, Narendra N. ;
Mavrogeni, Sophie ;
Laird, John R. ;
Sobel, David W. ;
Miner, Martin ;
Balestrieri, Antonella ;
Sfikakis, Petros P. ;
Tsoulfas, George ;
Misra, Durga Prasanna ;
Agarwal, Vikas ;
Kitas, George D. ;
Teji, Jagjit S. ;
Al-Maini, Mustafa ;
Dhanjil, Surinder K. ;
Nicolaides, Andrew ;
Sharma, Aditya ;
Rathore, Vijay ;
Fatemi, Mostafa ;
Alizad, Azra ;
Krishnan, Pudukode R. ;
Yadav, Rajanikant R. ;
Nagy, Frence ;
Kincses, Zsigmond Tamas ;
Ruzsa, Zoltan ;
Naidu, Subbaram ;
Viskovic, Klaudija ;
Kalra, Manudeep K. ;
Suri, Jasjit S. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
[8]   Wilson disease tissue classification and characterization using seven artificial intelligence models embedded with 3D optimization paradigm on a weak training brain magnetic resonance imaging datasets: a supercomputer application [J].
Agarwal, Mohit ;
Saba, Luca ;
Gupta, Suneet K. ;
Johri, Amer M. ;
Khanna, Narendra N. ;
Mavrogeni, Sophie ;
Laird, John R. ;
Pareek, Gyan ;
Miner, Martin ;
Sfikakis, Petros P. ;
Protogerou, Athanasios ;
Sharma, Aditya M. ;
Viswanathan, Vijay ;
Kitas, George D. ;
Nicolaides, Andrew ;
Suri, Jasjit S. .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2021, 59 (03) :511-533
[9]   A Novel Block Imaging Technique Using Nine Artificial Intelligence Models for COVID-19 Disease Classification, Characterization and Severity Measurement in Lung Computed Tomography Scans on an Italian Cohort [J].
Agarwal, Mohit ;
Saba, Luca ;
Gupta, Suneet K. ;
Carriero, Alessandro ;
Falaschi, Zeno ;
Pasche, Alessio ;
Danna, Pietro ;
El-Baz, Ayman ;
Naidu, Subbaram ;
Suri, Jasjit S. .
JOURNAL OF MEDICAL SYSTEMS, 2021, 45 (03)
[10]   PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: A link between carotid and coronary grayscale plaque morphology [J].
Araki, Tadashi ;
Ikeda, Nobutaka ;
Shukla, Devarshi ;
Jain, Pankaj K. ;
Londhe, Narendra D. ;
Shrivastava, Vimal K. ;
Banchhor, Sumit K. ;
Saba, Luca ;
Nicolaides, Andrew ;
Shafique, Shoaib ;
Laird, John R. ;
Suri, Jasjit S. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 128 :137-158