Finite Element Models of Gold Nanoparticles and Their Suspensions for Photothermal Effect Calculation

被引:3
作者
Terres-Haro, Jose Manuel [1 ,2 ,3 ]
Monreal-Trigo, Javier [1 ,2 ,3 ,4 ]
Hernandez-Montoto, Andy [1 ,4 ,5 ,6 ]
Ibanez-Civera, Francisco Javier [1 ,2 ,3 ]
Masot-Peris, Rafael [1 ,2 ,3 ]
Martinez-Manez, Ramon [1 ,4 ,5 ,6 ]
机构
[1] Univ Politecn Valencia, Inst Interuniv Invest Reconocimiento Mol & Desarro, Camino Vera S-N, Valencia 46022, Spain
[2] Univ Politecn Valencia, Dept Elect, Camino Vera S-N, Valencia 46022, Spain
[3] Univ Politecn Valencia, Inst Interuniv Invest Reconocimiento Mol & Desarro, Grp Elect Dev & Printed Sensors Ged Ps, AN34 Space,7E Bldg, Valencia 46022, Spain
[4] Inst Salud Carlos III, CIBER Bioingn Biomat & Nanomed CIBER BBN, Madrid 28029, Spain
[5] Univ Politecn Valencia, Ctr Invest Principe Felipe, Unita Mixta UPV CIPF Invest Mecanismos Enfermedade, Valencia 46012, Spain
[6] Univ Politecn Valencia, Unidad Mixta Invest Nanomed & Sensores, IIS La Fe, Valencia 46026, Spain
来源
BIOENGINEERING-BASEL | 2023年 / 10卷 / 02期
关键词
Finite Element Methods; metal nanoparticles; plasmonics; photothermal effect;
D O I
10.3390/bioengineering10020232
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
(1) Background: The ability of metal nanoparticles to carry other molecules and their electromagnetic interactions can be used for localized drug release or to heat malignant tissue, as in the case of photothermal treatments. Plasmonics can be used to calculate their absorption and electric field enhancement, which can be further used to predict the outcome of photothermal experiments. In this study, we model the nanoparticle geometry in a Finite Element Model calculus environment to calculate the effects that occur as a response to placing it in an optical, electromagnetic field, and also a model of the experimental procedure to measure the temperature rise while irradiating a suspension of nanoparticles. (2) Methods: Finite Element Method numerical models using the COMSOL interface for geometry and mesh generation and iterative solving discretized Maxwell's equations; (3) Results: Absorption and scattering cross-section spectrums were obtained for NanoRods and NanoStars, also varying their geometry as a parameter, along with electric field enhancement in their surroundings; temperature curves were calculated and measured as an outcome of the irradiation of different concentration suspensions; (4) Conclusions: The results obtained are comparable with the bibliography and experimental measurements.
引用
收藏
页数:14
相关论文
共 53 条
  • [1] Computational electromagnetics in plasmonic nanostructures
    Amirjani, Amirmostafa
    Sadrnezhaad, S. K.
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2021, 9 (31) : 9791 - 9819
  • [2] Recent energy targeted applications of localized surface plasmon resonance semiconductor nanocrystals: a mini-review
    Balitskii, O. A.
    [J]. MATERIALS TODAY ENERGY, 2021, 20
  • [3] 3D-FDTD modelling of optical biosensing based on gold-coated nanoporous anodic alumina
    Berto-Rosello, Francesc
    Xifre-Perez, Elisabet
    Ferre-Borrull, Josep
    Marsal, Lluis F.
    [J]. RESULTS IN PHYSICS, 2018, 11 : 1008 - 1014
  • [4] Sustainable Nanoplasmon-Enhanced Photoredox Reactions: Synthesis, Characterization, and Applications
    Bhattacharya, Chirasmita
    Saji, Sandra Elizabeth
    Mohan, Akhil
    Madav, Vasudeva
    Jia, Guohua
    Yin, Zongyou
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (40)
  • [5] Bohren C. F., 1998, ABSORPTION SCATTERIN, DOI DOI 10.1002/9783527618156
  • [6] Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity
    Boisselier, Elodie
    Astruc, Didier
    [J]. CHEMICAL SOCIETY REVIEWS, 2009, 38 (06) : 1759 - 1782
  • [7] Plasmonic refractive index sensor based on metal-insulator-metal waveguides with high sensitivity
    Butt, M. A.
    Khonina, S. N.
    Kazanskiy, N. L.
    [J]. JOURNAL OF MODERN OPTICS, 2019, 66 (09) : 1038 - 1043
  • [8] Three-dimensional analysis of surface plasmon resonance modes on a gold nanorod
    Chau, Yuan-Fong
    Chen, Min Wei
    Tsai, Din Ping
    [J]. APPLIED OPTICS, 2009, 48 (03) : 617 - 622
  • [9] Manipulating near field enhancement and optical spectrum in a pair-array of the cavity resonance based plasmonic nanoantennas
    Chau, Yuan-Fong Chou
    Jiang, Jhih-Cyuan
    Chao, Chung-Ting Chou
    Chiang, Hai-Pang
    Lim, Chee Ming
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (47)
  • [10] Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod
    Chau, Yuan-Fong Chou
    Lim, Chee Ming
    Lee, Chuanyo
    Huang, Hung Ji
    Lin, Chun-Ting
    Kumara, N. T. R. N.
    Yoong, Voo Nyuk
    Chiang, Hai-Pang
    [J]. JOURNAL OF APPLIED PHYSICS, 2016, 120 (09)